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ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier transmission scheme

used in most of the existing wireless standards such as LTE, WiFi and WiMAX. The popularity of

OFDM stems from the multitude of benefits it offers in terms of providing high data rate transmis-

sion, robustness against multipath fading and ease of implementation. Additionally, OFDM signals

are agile in the sense that any subcarrier can be switched on or off to fit the available transmission

bandwidth, which makes it well suited for systems with dynamic spectrum access such as cogni-

tive radio systems. Nonetheless, and despite all the aforementioned advantages, OFDM signals

have high spectral sidelobes outside the designated band of transmission, that can create severe

interference to users in adjacent transmission bands, particularly when there is no synchronization

between users. The focus of this dissertation is to propose baseband solutions at the Physical

Layer (PHY) of the communications system to address the interference resulting from the high

out-of-band (OOB) emissions of OFDM.

In the first part of this dissertation, we propose a precoder capable of generating mask

compliant OFDM signals with low OOB emissions that are always contained under a given spec-

trum emission mask (SEM) specified by the OFDM standard. The proposed precoder generates

transmitted signals with bit error rate (BER) performance similar to that of classical OFDM and

does not reduce the spectral efficiency of the system.

In the second part of this dissertation, we introduce a novel and elegant approach, called

suppressing alignment (SA), to jointly reduce the OOB interference and peak-to-average power

ratio (PAPR) of OFDM systems. SA exploits the unavoidable redundancy provided by the CP as

well as the wireless communications channel to generate an OOB/PAPR suppressing signal at the

OFDM transmitter. Furthermore, after passing through the wireless channel, the suppressing signal

is aligned with the CP duration at the OFDM receiver, essentially causing no interference to the

vi
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data portion of the OFDM symbol. The proposed approach improves the PAPR of the transmitted

OFDM signal and reduces the OOB interference by tens of decibels. Additionally, the proposed

approach maintains an error performance similar to that of plain OFDM without requiring any

change in the receiver structure of legacy OFDM.

In order to reduce the spectral emissions of OFDM, additional blocks, such as linear pre-

coders, are usually introduced in the transmitter leading to a transmitted signal that is drastically

different than that of a classical OFDM signal. This distortion is typically quantified by the error

vector magnitude (EVM), a widely used metric specified by the wireless standard and is directly

related to the BER performance of the system. The receiver can usually decode the information

data with acceptable error probabilities if the distortion introduced to the transmitted signal is

below the EVM values specified in the OFDM standard. Linear precoders, while capable of achiev-

ing significant reduction in the OOB interference, they typically introduce large distortion to the

transmitted signal. As such, the receiver needs to know the precoding done at the transmitter to

be able to recover the data which usually entails sending large amount of side information that can

greatly reduce the spectral efficiency of the system. In the last part of this dissertation, we target

the design of precoders for the purpose reducing the OOB interference, in a transparent manner

where the receiver does not need to know the changes introduced in the transmitter. We present two

precoders capable of significantly reducing the OOB emissions while producing transmitted signals

with EVM values below those specified by the wireless standard, thereby guaranteeing acceptable

error performance.

vii
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The demand for high data rates has increased tremendously over the last decade due in part

to the proliferation of multimedia services as well as the increased usage and availability of smart

devices that enable such types of applications. This huge shift from voice-centric applications man-

dates a change in the way communications systems are designed. In particular, new technologies

are needed that enable efficient utilization of the spectrum. The current static allocation of the

spectrum is not well suited for such high increases in the data rates. The problem of not meeting

the high demand in wireless broadband services has usually been attributed to the lack of spectrum

resources. Nonetheless, several measurement campaigns conducted by the Federal Communication

Commission (FCC) show significant underutilization of licensed frequency bands [3]. Therefore,

what was originally viewed as a spectrum scarcity problem, is in reality an underutilization of

spectrum resources. Such inefficient use of the radio spectrum can be completely avoided if op-

portunistic use of the licensed spectrum is allowed. The idea here is that, although the licensed

spectrum is owned by some entity that has exclusive rights over the assigned frequency band, it

should be allowed to be used by others whenever the legacy owner is idle. Such opportunistic access

of the spectrum by unlicensed users can potentially create enough spectrum resources to meet the

high data rates demand of next generation networks.

Motivated by these findings, cognitive radio, proposed by Mitola [4], has emerged as the

enabling technology aimed at alleviating the problems arising from the static usage of the spectrum.

A cognitive radio as envisioned by Mitola, is an intelligent radio that is aware of its surroundings,

capable of sensing the environment, and able to adapt its transmission parameters accordingly.

1
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Through the use of cognitive radio, a secondary user (SU) can detect unoccupied licensed frequency

bands owned by a legacy user, also known as a primary user (PU), and utilize these frequencies

temporarily [5]. However, such opportunistic access of the spectrum poses several technological

challenges, particularity at the physical layer (PHY) of the wireless communications system. One

major challenge is the ability of the radio of the SU to sense and detect idle frequency bands

(also known as white spaces) not currently used by the PU. This is widely known as the spectrum

sensing problem, which is very crucial to the operation of any cognitive radio system. A plethora

of research has been dedicated to the spectrum sensing problem, readers can refer to [6] and the

references therein for more information. The other major challenge, which is the focus of this

dissertation, is related to the coexistence of opportunistic users and the legacy owners of the

spectrum. Opportunistic access of the spectrum in a cognitive radio environment is based on the

premise that the secondary opportunistic user causes minimal interference to the legacy primary

users operating in adjacent bands. In fact, secondary access of the spectrum is allowed only under

very strict interference requirements specified by regulatory agencies such as the FCC in the United

States. Such interference requirements are usually specified in the form of a spectral emission mask

(SEM). In this context, the transmitter of the secondary cognitive radio system should have low

out-of-band (OOB) emissions that meet the spectral demands of the specified regulatory mask.

In addition to the OOB emissions requirement discussed above, the PHY layer of the cogni-

tive radio should adopt an agile waveform, that can adaptively shape its spectrum. This is due to

the fact that the white spaces are usually non-contiguous and scattered across the whole frequency

band. An agile waveform would be able to fill and aggregate all white spaces (spectrum holes)

not used by the primary system. Multicarrier schemes readily fullfil this requirement as they have

the ability to null or turn-off subcarriers in locations where legacy users are transmitting. For

this reason, several multicarrier waveforms, such as filter bank multicarrier (FBMC) [7], general-

ized frequency division multiplexing (GFDM) [8] and orthogonal frequency division multiplexing

(OFDM) [9], were proposed for the PHY layer of cognitive radios. Although both FBMC and

GFDM have very low OOB emissions compared to OFDM, which as discussed above is a very

important requirement in a cognitive radio network, OFDM seems to be the most widely adopted

2
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waveform in most wireless standards. For example, OFDM is chosen as the primary transmis-

sion in the 3rd Generation Partnership Project (3GPP) LTE [10], WiFi [11], WiMAX [12] and

most importantly in the two recent cognitive radio standards IEEE 802.22 WRAN [13] and IEEE

802.11af [14, 15]. It has also been adopted in broadcasting systems such as Digital Video Broad-

casting (DVB) [16] and Digital Audio Broadcasting (DAB) [17]. This prevalent adoption of OFDM

is mainly due to the numerous advantages it offers compared to other multicarrier waveforms. For

example, OFDM can effectively handle the performance deterioration imposed by frequency selec-

tive channels by dividing the transmission bandwidth into smaller, low rate frequency bands [18],

that operate under flat fading conditions, thereby allowing the use of simple single tap equalizers for

data recovery. Furthermore, it is capable of reducing the effects of inter-symbol interference (ISI)

introduced by the channel delay spread. ISI happens when adjacent OFDM symbols leak into each

other. By adding a guard interval longer than the channel delay spread between adjacent symbols,

OFDM can completely eliminate the effects of ISI. This guard interval is known as the cyclic prefix

(CP) and is constructed by copying the last samples of the OFDM symbol and appending them to

the start of the symbol. Due to all of these factors and its waveform agility, OFDM seems to be a

natural choice for cognitive radio [19].

Despite all the attractive features outlined above, OFDM suffers from two major draw-

backs: 1) high OOB power leakage and 2) high peak-to-average power ratio (PAPR). Both of these

shortcomings have a large impact on the performance of OFDM and can greatly limit its adoption

in a cognitive radio network, as they both contribute to the interference created by the OFDM

waveform. The focus of this dissertation is to address these two problems in order to minimize the

interference and enable coexistence between SU and PU users in the cognitive radio network.

1.2 Dissertation Objectives

As mentioned in the previous discussion, classical OFDM typically does not meet the spec-

tral emission requirements of cognitive radio standards, as well as many other wireless standards.

The prime reason that OFDM signals have high spectral emissions outside the designated trans-

mission band is due to the finite duration of the rectangular pulse typically used in the construction

3
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of OFDM signals. Rectangular pulses have a sinc like shape in the frequency domain, which causes

the OFDM spectrum to decay slowly as f−2 [20]. Such slow decaying can potentially create severe

interference to users operating in adjacent frequency bands [21]. As a result of the high OOB

emissions, the transmission channels in an OFDM system are typically spaced further apart in

order to reduce the impact of the resulting interference on adjacent channels. This results in a

waste of spectrum and reduces the overall spectral efficiency of the system. Thus, reducing the

OOB emissions of OFDM ultimately leads to an improvement of the system spectral efficiency, as

transmission channels can be placed closer to each other.

In addition to the high OOB emissions, OFDM also has a high PAPR problem. The

PAPR problem arises from the fact that OFDM signals are composed of multiple subcarriers with

independent amplitudes and phases, that when added together, are more likely to generate a signal

with high peak power [22]. Such peak power may lead to the signal being severely clipped, especially

if it exceeds the linear region of operation of the transmitter power amplifier (PA). Signal clipping

creates serious inband distortion that ultimately results in large degradation in the bit error rate

(BER) performance at the receiver. Besides the inband distortion, high PAPR increases the OOB

emissions which is known as a spectral regrowth problem [23]. Thus, the high PAPR characteristic

of OFDM indirectly creates interference that can potentially harm users in adjacent channels.

For the reasons outlined in the discussion above, the objective of this dissertation is to

develop PHY layer solutions to reduce the interference as a result of the high OOB emissions and

PAPR associated with OFDM signals. Typically, reducing the interference in OFDM systems entails

trading off either the spectral efficiency or the error rate performance. However, and as discussed

before, next generation networks, such as 5G, require very high spectral efficiency in order to meet

the increasing demand in broadband services. Accordingly, our focus in this dissertation is the

development of algorithms that reduce the interference while maintaining the spectral efficiency of

classical OFDM. We also target solutions that result in an error performance identical or close to

that of classical OFDM.

4
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1.3 Contributions

1.3.1 Mask Compliant Precoder

In Chapter (3), we propose a precoder for shaping the spectrum of orthogonal frequency

division multiplexing (OFDM) signals. Unlike existing methods that focus on minimizing or forcing

the spectral sidelobes to zero, the proposed precoder is designed with the goal of controlling the

out-of-band emissions beneath a particular power level without impacting the bit error rate (BER)

performance. A small distortion is added to the information symbols forcing the emitted spectrum

under a prescribed radio frequency mask. Obtained results show that the BER performance of the

proposed precoder is similar to that of uncoded OFDM under relaxed masks. We also investigated

the impact of the proposed precoder on edge subcarriers. Error vector magnitude (EVM) per sub-

carrier shows the designed precoder introduces more distortion on edge subcarriers. Consequently,

the proposed precoder when combined with adaptive modulation provides further improvement in

BER performance under strict masks.

1.3.2 Suppressing Alignment: Joint PAPR and Out-of-Band Power Leakage Reduc-

tion for OFDM-Based Systems

In Chapter (4), we propose a novel approach called suppressing alignment for the joint

reduction of the OOB power leakage and PAPR. The proposed approach exploits the temporal

degrees of freedom provided by the CP, a necessary redundancy in OFDM systems, to generate

a suppressing signal, that when added to the OFDM symbol, results in marked reduction in both

the OOB power leakage and PAPR. Additionally, and in order to not cause any interference to the

information data carried by the OFDM symbol, the proposed approach utilizes the wireless channel

to perfectly align the suppressing signal with the CP duration at the OFDM receiver. In doing so,

we essentially maintain a BER performance similar to legacy OFDM without requiring any change

in the receiver structure. To the best of our knowledge, this the first scheme that exploits the

degrees of freedom provided by the CP and the wireless channel for spectral emissions reduction

without degrading the error performance or reducing the spectral efficiency.

5
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1.3.3 Two Error Vector Magnitude Compliant Precoders for Out-of-Band Power

Leakage Reduction in OFDM Based Systems

In Chapter (5), we consider linear precoding as a mean of reducing the spectral emissions of

Orthogonal Frequency Division Multiplexing (OFDM). However, we focus on the design of linear

precoders in a transparent manner, where the receiver does not need to know the precoding done

at the transmitter, thereby eliminating the need to transmit any side information to the receiver

or introducing any changes in the legacy OFDM receiver structure. To this end, we utilize the

degrees of freedom provided by the Error Vector Magnitude (EVM) tolerance. We first present a

closed-form full rate precoder capable of achieving remarkable OOB power leakage reduction while

limiting the distortion introduced on the transmitted signal to EVM values specified by the OFDM

standard. Second, we present a different precoder with better spectral suppression, albeit at a

slightly reduced transmission rate, that produces transmitted signals with similar EVM values to

those specified in the standard. Although the second precoder does not have a close-form expression,

it can be computed numerically off-line, and only once for a given spctral occupancy.

6
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CHAPTER 2

SURVEY

2.1 Introduction

The goal in this chapter is to provide a comprehensive review of the main OOB power

leakage reduction algorithms. The chapter also provides a unified framework under which most

of the out-of-band radiation reduction algorithms can be described. The chapter is organized as

follows: Section 2.2 gives the system model under which various OOB power leakage reduction

algorithms are described. Section 2.3 presents the most important metrics considered in evaluating

the performance of OOB power leakage reduction algorithms. In Section 2.4, we present a review

of the most important algorithms for the reduction of OOB power emissions. Future directions are

given in Section 2.5. Finally, our conclusion is given in Section 2.6.

2.2 OFDM System Model for Out-of-band Power Leakage Reduction

To describe the out-of-band reduction schemes, a matrix based framework is introduced

below. The time domain OFDM symbol can be written as

s = PTCcpQ
HPFd (2.1)

where the vector d ∈ CN×1 contains the information data to be transmitted, PF denotes a linear

transformation matrix in the frequency domain, Q is the fast Fourier transformation (FFT) matrix.

PT is a linear transformation matrix in the time domain. The matrix Ccp adds a CP of length

L to the beginning of every OFDM symbol and is defined in (2.2) below. We will follow this

framework throughout the chapter to explain most sidelobe suppression methods. The processing

7
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Figure 2.1 System model OFDM with OOB power leakage reduction.

matrices PT and PF describe the additional processing blocks introduced in the OFDM transmitter

as shown in Figure 2.1 for the purpose of reducing the OOB emissions, and will be referred to as

precoding or transformation matrices interchangeably from now on. Note that if both PT and PF

are the identity matrix, s represents just plain OFDM samples. Moreover, if we are describing a

time domain method such as windowing, PT would be a diagonal matrix containing the samples

of the window function and PF would be the identity matrix. In general, PF would be the identity

matrix if we are describing a time domain scheme, and PT would be the identity matrix if we are

describing a frequency domain scheme.

Ccp =

0L×(N−L) IL

IN

 (2.2)

We also define the interference coefficient matrix A that hold the leakage contribution of

every subcarrier in the out-of-band region as follows: let ak(f) be the interference coefficient from

the kth subcarrier to any frequency f in the out-of-band region, which can be obtained by the

taking the Fourier transform of the rectangularly windowed kth subcarrier

ak(f) =

∫ T
2

-T
2

e
j2πk
Ts

te−j2πftdt = sinc

(
T (f − k

Ts
)

)
(2.3)

8
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where T is the length of the OFDM symbol. The interference coefficient matrix A is then defined

as

[A]m,k = ak(fm) (2.4)

where fm is any frequency outside the transmission band. This interference coefficient matrix

will be used throughout the chapter to aid in the description of the various out-of-band reduction

algorithms.

2.3 Performance Metrics for Out-of-band Emission Reduction Algorithms

2.3.1 Power Spectral Density and Adjacent Channel Leakage Ratio

The power spectral density (PSD) and the adjacent channel leakage ratio (ACLR) are the

two most used figures of merit for the measurement of out-of-band emissions. The PSD shows

the spectral emissions of the radio transmitter across the frequency band. It is used mostly in

determining whether the out-of-band power from wireless devices complies with the radio frequency

(RF) emissions set by regulatory agencies. Power emissions of all wireless devices have to usually fall

inside a strict SEM specified by regulatory entities such as the FCC in the United States and Office

of Communications (Ofcom) in the United Kingdom. While the power spectral density measures

the power emissions of the transmitter, the ACLR on the other hand estimates how much power is

leaked into the adjacent channel, thereby showing the effect of the transmitter power emissions on

nearby devices.

2.3.2 Bit Error Rate

Although the performance of out-of-band interference reduction schemes is usually quanti-

fied by the PSD or ACLR, another equally important metric is the BER. This is because for most

schemes, while their main goal is to reduce the out-of-band emissions, they do so by sacrificing

the error performance. For example, some schemes reserve some subcarriers for the sole purpose of

minimizing the spectral emissions. This effectively reduces the useful signal-to-noise ratio (SNR) as

9
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these subcarriers do not carry any information, leading to degradation in the BER. Other schemes

reduce the out-of-band emissions by distorting the data symbols, and depending on how large

this distortion is, the BER performance will be affected accordingly. The trade-off between the

out-of-band interference reduction and BER performance is very evident is most of the proposed

algorithms.

2.3.3 Data Rate Loss

Just as there is a trade-off between the out-of-band interference reduction and the BER,

there is also a trade-off with the spectral efficiency. As mentioned before, some of the spectral

suppression algorithms reserve some subcarriers for the sole purpose of reducing the emissions.

The data rate loss comes from the fact that these subcarriers carry non-information data which

might have otherwise been used for data transmission. Other schemes extend the OFDM symbol

in time, therefore decreasing the throughput. The ultimate goal of most techniques is to have a

balance between the amount of interference reduction and data rate loss.

2.3.4 Peak-to-Average Power Ratio

The PAPR is a very important performance metric for OFDM waveforms and is defined as

the ratio of the peak instantaneous power to the average power of the transmitted signal. Multi-

carrier waveforms, including OFDM are known to have high PAPR. This is due to the fact that

OFDM signals are composed of independent data modulated over multiple subcarriers that might

add up coherently, therefore creating large peaks while the average power stays relatively the same.

High PAPR requires the power amplifier of the transmitter to have a large dynamic range, other-

wise the signal will be clipped creating what is known as the spectral regrowth problem, where the

sidelobes of the signal would grow back up, even after being suppressed before the power amplifier.

Therefore it is necessary that algorithms developed for suppressing the spectral sidelobes of OFDM

do so without increasing the PAPR of the transmitted signal.

10
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OOB Reduction 
Techniques

Time Domain 
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Techniques
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Figure 2.2 Classification of OOB power leakage reduction algorithms.

2.3.5 Computational Complexity

Wireless devices have limited processing power and memory, therefore developing algo-

rithms that match the processing power of these devices is of paramount importance. Most of the

techniques that achieve remarkable spectral suppression, have prohibitive computational complex-

ity which imposes significant delays and additional processing power that makes them unrealizable

in real time applications.
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2.4 OOB Reduction Techniques

The out-of-band leakage in OFDM is large enough to cause severe interference in neighboring

channels. This is very critical, especially in cognitive radio applications where SU users are not

allowed to cause any interference to PU users. While simply turning off subcarriers close to the band

edges slightly reduces the out-of-band leakage, this reduction is not sufficient to allow operation

in neighboring channels, since the sidelobes decay very slowly, asymptotically as f−2 [20]. As

a result, many methods were developed for reducing the spectral emissions in OFDM. Most of

these methods can be classified under two main categories: frequency domain techniques and time

domain techniques with the frequency domain category subdivided further in several subcategories

as shown in Figure 2.2. In this section, some of the most well known methods in each category will

be discussed.

2.4.1 Frequency Domain Techniques

Frequency domain algorithms typically reduce the OOB emissions of OFDM by operating

on the incoming data in the frequency domain through some transformation matrix PF as shown

in Figure 2.1. Frequency domain algorithms can be classified under three main subcategories:

precoding schemes, tone reservation schemes and symbol predistortion techniques as shown in

Figure 2.2. We will discuss most of the algorithms under each subcategory, but first we will give

some background on the properties of the transformation matrix PF that will help in understanding

most of the frequency domain algorithms, particularly precoding algorithms.

The transformation PF is considered orthogonal if its columns are drawn from an orthogonal

basis. Put differently, any transformation P that satisfies PHP = I is an orthogonal transformation.

This is a necessary and sufficient condition for the transformation to be orthogonal. Additionally,

if the transformation satisfies PPH = I, it is considered a square orthogonal transformation. Or-

thogonal transformations are desirable in the sense that they preserve the orthogonality among the

subcarriers in OFDM as opposed to non-orthogonal transformations which destroy the orthogonal-

ity between the subcarriers and degrade the error performance. This is true regardless of whether

the transformation is square or rectangular. Additionally, a square orthogonal transformation, by
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virtue of being a complete matrix, does not reduce the transmission rate of the system compared to

rectangular orthogonal transformations. However, square orthogonal transformations are not ca-

pable of reducing the out-of-band power leakage. Therefore, in order to reduce the OOB emissions

of OFDM while maintaining the orthogonality between the subcarriers, PF has to be a rectangular

orthogonal matrix. PF can be designed to be a full matrix to maintain the transmission rate, but

it cannot be orthogonal is such a case if the purpose of the design is to reduce the OOB emissions.

This shows the trade-off between the error rate and the data rate that we will encounter in most

of the out-of-band reduction algorithms.

Most frequency domain techniques, especially precoding algorithms, reduce the the out-of-

band emissions in OFDM by introducing correlation between the modulated symbols. According

to [24], the OFDM power spectrum is

P (f) =
1

T
aT (f)E{ddH}a∗(f) (2.5)

where T is the length of the OFDM symbol, a(f) is a vector with elements defined in (2.3), (.)T

is the transpose and (.)∗ is the conjugate operator. The result in (2.5) clearly shows the impact

of the correlation between the modulated data within one OFDM symbol on the power spectrum.

The modulated data are usually assumed to be uncorrelated, i.e, E{ddH} = I, therefore the power

spectrum becomes

P (f) =
1

T
aT(f)a∗(f) =

1

T
‖a(f)‖22 (2.6)

which is the sum of the power of the sinc functions, i.e, the power spectrum of plain OFDM

waveforms. Therefore, in order to reduce the OOB power leakage, most of the precoding algorithms

discussed below have transformation matrices PF that introduce correlation between the modulated

symbols.
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2.4.1.1 Precoding Techniques

The concept of precoding has been exploited extensively in the past to improve various

performance characteristics of OFDM. For example, in [25] precoding is used for reducing the

PAPR and in [26, 27] it is used to counteract the effects of the channel and improve the error

performance. Recently precoding has been explored for the purpose of reducing the out-of-band

emissions in OFDM [1, 28–38]. The main idea, as mentioned in the previous discussion, is to

introduce correlation between the transmitted data stream using some transformation PF in order to

produce new data symbols with better spectral emissions. Most sidelobe suppression schemes that

operate directly on the data, i.e., frequency domain algorithms, fall under the precoding category.

However, for the purpose of this review the term precoding refers to only those methods whose

precoding or transformation matrix is independent of the data stream, i.e., the transformation

matrix is fixed and does not have to be computed for every incoming OFDM symbol. There are

various types of precoding schemes designed under different conditions and criteria, but all with

the one goal of reducing the out-of-band emissions. These precoding methods will be discussed

below.

2.4.1.1.1 Non-orthogonal Precoding

Non-orthogonal precoders are full rate precoders in the sense that they do not reduce the

transmission rate of the data stream. They achieve spectral suppression by introducing correlation

among the modulated data within one OFDM symbol, just like all other frequency domain precoders

(orthogonal or not orthogonal). However, they do so by sacrificing the error performance, since the

orthogonality of the transmission scheme is destroyed by the precoding operation. One example

of such precoders is the precoder presented in [1]. It achieves remarkable spectral suppression by

projecting the modulated data into the nullspace of the interference coefficient matrix defined in

(2.4). The nullspace of any matrix B is all vectors x such that Bx = 0. Therefore by mapping the

original modulated symbols d to a new set of symbols d̄ using a linear transformation such that d̄ lies

completely in the nullspace of A, the OOB power leakage at some selected frequencies (frequencies

defined in A) can be completely eliminated. Moreover, d̄ is found by orthogonally projecting
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the data vector d, which provides the nearest vector to d, thereby providing the minimum error

probablity among all nullspace vectors. Using the framework defined in (2.1) with PT = I and

PF is the nullspace orthogonal projection transformation defined as (see [39] for more information

about projections)

PF = I−AH(AAH)
−1

A . (2.7)

Precoding the information symbols with this projection matrix nulls the sidelobes at the set of dis-

crete frequencies defined in A. However, the objective is to zero all power leakage in the OOB, not

just at a number of discrete frequency locations. Fortunately, the results in [1] show that through

careful selection of the discrete frequency set where the nulls are placed, the whole out-of-band

spectrum can be significantly minimized. It was shown that by selecting pairs of notching frequen-

cies next to each other, the spectrum at these frequencies as well as the surrounding frequencies

will be suppressed.

The nullspace projection precoder in [1] achieves remarkable sidelobe suppression compared

to other algorithms. However, it does so at the expense of a significant reduction in the error

performance. This so because by virtue of being a projection precoder, the precoder in [1] maps

the data vector from a higher dimensional subspace to a lower dimensional subspace, effectively

reducing its distance properties. The interference coefficient matrix A ∈ CM×N, where M is the

number of frequencies where the sidelobe nulls are placed and N is the total number of subcarriers,

has a nullspace with a dimension of N −M . Therefore, the precoder in (2.7) where PF is N ×N ,

projects the data from an N-dimensional subspace onto the (N − M) dimensional nullspace of

the interference matrix, thereby distorting the data. Another interpretation of the reduction in

the error performance of the precoder (2.7) is that projections are generally non-invertible, so

once the data is distorted by projection, that distortion is irreversible. This also explains the

reduction in error performance even if the receiver knows the projection operation done at the

transmitter. A different non-orthogonal precoder that also projects the transmitted data into the

nullspace of the OOB interference matrix is presented in [28]. It has a precoding matrix similar
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to (2.7). The difference here is that not all subcarriers are utilized for data transmission, some

subcarriers are reserved to mitigate the distortion introduced by the projection precoder and aide

in the data recovery at the receiver. However, its error performance is still inferior to plain OFDM.

Additionally, it reduces the transmission rate due to the use of the reserved subcarriers that do not

carry any information data. Another non-orthogonal precoder was presented in [33] that achieves

spectral sidelobes decaying as f−2(L+1), where L is a design parameter, however it suffers from the

same error performance that is generally associated with non-orthogonal precoders.

A novel non-orthogonal precoder called N-continuous OFDM [31] that recognizes the signal

discontinuity as the main cause of the high OOB power leakage in OFDM. Making the OFDM

symbols continuous at the symbol edges leads to smoother transitions between consecutive symbols

and effectively reduces the OOB emissions. Continuity and smoothness are related to the number

of continuous derivatives, therefore smooth transitions can be created by making the transmitted

signal and its first N derivatives continuous at the symbol borders by satisfying

dn

dtn
si(t)|t=−Tg =

dn

dtn
si−1(t)

t=Ts
(2.8)

where Tg is the CP duration and Ts is the useful symbol duration. The formulation in (2.8) makes

the current OFDM symbol as well as its first N derivatives at t = −Tg (start of the symbol) equal

to those of the previous symbol at t = Ts (end of the symbol). Signals satisfying (2.8) are said to

be N-continuous and have smooth transitions at the symbol edges. The path towards generating

smooth signals here differs greatly from the one followed in time-domain windowing (discussed

below). In the windowing method, the time-domain OFDM symbol is extended in time as well

as scaled down at the symbol edges by the window function. This process contaminates the CP,

effectively reducing its size. To overcome such a shortcoming, N -continuous OFDM modifies the

original information data directly in the frequency domain. The authors proposed to precode the

data stream di of the current OFDM symbol to generate new symbols d̄i the satisfy the N-continuity

criteria above. Achieving signal continuity in this manner requires information about the previous

symbol which might create some memory and buffering constraints on the transmitter. To alleviate
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those problem, a memoryless precoder that achieve the signal continuity is reported in [2] where the

derivatives at the two edges of the time domain OFDM symbol are forced to zero. This way, every

OFDM symbol as well as its derivatives start and end at zero which makes consecutive symbols

continuous and is accomplished by

dn

dtn
si(t)|t=−Tg =

dn

dtn
si(t)

t=Ts
= 0 . (2.9)

The linear constraints represented (2.9) are collected in some matrix B and the information vector

d is projected into its nullspace using the precoder PF. The design of the precoder PF is similar

to (2.7), the only difference here is that subspace where the information data is projected to is

represented by some matrix B that hold the continuity conditions in (2.9). Just as the case with

all projection precoders where the data is mapped to a smaller subspace, the N -continuous OFDM

precoder in [2] degrades the BER performance compared to that of plain OFDM. N-continuous

OFDM improves the spectral containment of OFDM significantly with even deeper spectral sup-

pression as the order of continuity N increases. However, the BER performance deteriorates as

the order of continuity increases. To improve the BER performance, an N -continuous OFDM pre-

coder that maintains the orthogonality between the subcarriers is presented in [32]. This precoder

provides similar BER performance as classical OFDM; however it does so by trading off the data

rate. Moreover, it requires the previous OFDM symbol in order to achieve continuity, which puts

extra requirements on the transmitter in terms of memory resources. While the precoders in [2,

31, 32] are fixed and need to be computed once, they have prohibitive computational complexity

that increases with the number of subcarriers which makes their implementation in practice not

feasible.

2.4.1.1.2 Orthogonal Precoding

Orthogonal precoders maitain the same error performance as uncoded OFDM. However,

using orthogonal precoders to suppress the sidelobes usually comes at the expense of some reduction

in the data rate. The precoders discussed in this subsection are usually designed to achieve similar

spectral suppression performance as non-orthogonal precoders, albeit at a lower transmission rate,
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while preserving the orthogonality among the subcarriers and producing waveforms with error

performance similar to OFDM. In [29], the data stream is mapped using a linear transformation

PF such that it lies completely in the nullspace of the interference coefficient matrix A. However,

this time, the mapping is restricted to being an orthogonal multiplexing mapping, i.e, the columns

of the linear transformation PF are constructed from an orthonormal basis set. In this particular

case, the basis set is chosen to be the orthonormal basis for the nullspace of the interference

coefficient matrix A. Since any linear combination of the nullspace basis remains in the nullspace,

this ensures that the precoded data d̄ = PFd reside completely in the nullspace, therefore nulling

the spectrum at the discrete frequencies defined in A and reducing the spectrum at the surrounding

frequencies as well. However, the nullspace of the interference matrix A has only N−M dimensions,

where N is the number of subcarriers and M is the number of notched frequencies. Therefore, its

nullspace has only N −M orthogonal basis. Consequently, the orthogonal precoder PF which has

its columns composed of these basis, can only multiplex N −M data symbols, effectively reducing

the transmission rate of the system (only N −M of N subcarriers carry information data). As

we mentioned before, orthogonal transformations cannot reduce the spectral emissions without

trading off the transmission rate of the system. Furthermore, it is very complex and unrealizable

in practice, especially for a system with a large number of subcarriers.

In [30], it was shown that the total average power of the out-of-band leakage is the sum of

the singular values of the interference coefficients matrix A. An orthogonal precoder was designed

that blanks out the largest singular values, therefore reducing the power leakage. This precoder

converges to the one in [29] discussed above if all singular values are zeroed by the precoder,

effectively forcing the signal to the nullspace. Several other orthogonal precoders were proposed

in [34].

Frequency domain orthogonal precoders achieve huge reduction in the out-of-band leakage

and provide similar error performance to OFDM, however, as stated above, their computational

complexity is not tractable for real time applications. Furthermore, they are not spectrally efficient,

especially for cognitive radio scenarios where the frequency holes are narrowband and scattered

across the spectrum.
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2.4.1.2 Data Adjusting Techniques

Data adjusting schemes are similar to the frequency domain precoding schemes discussed

above, where the spectral suppression is achieved by directly modifying the information data in the

frequency domain. However, for the precoding schemes, the transformation or precoding matrix is

fixed. Here the precoder is not fixed and has to be computed for every OFDM symbol. As a result,

most data adjusting schemes have high computational complexity.

A widely known data adjusting scheme is subcarrier weighting [40, 41], where all subcarriers

are multiplied with real-valued weights with the goal of minimizing the sidelobes in the OOB region.

This can be realized by designing PF in (2.1) as a diagonal precoding matrix of the form:

PF =



p1 0 . . . 0

0 p2 . . . 0

...
...
. . .

...

0 0 . . . pN


, (2.10)

where the optimal weights pi are determined by minimizing the OOB power of the weighted OFDM

signal according to

PF = arg min
PF

‖A PFd︸︷︷︸
d̄

‖22 , (2.11)

where A is interference coefficient matrix defined in (2.4), and d̄ are a new set of symbols generated

by the precoding matrix PF with better spectral emissions compared to the original symbols d. In

order to guarantee that the new symbols have the same power as the original data, the following

constraint is introduced to the optimization problem in (2.11)

‖d̄‖22 = ‖d‖22 . (2.12)

Since the original data has been modified by the precoding matrix PF, the receiver needs to know PF

to be able to recover the original data. This entails transmitting a large amount of side information
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to the receiver which leads to huge reduction in the data rate. To alleviate such a problem, the

weights of the precoding matrix PF are designed in such a way that the new symbols d̄ remain

in the same decision region as the original symbols. This way the generated symbols d̄ can be

detected without the need for any side information to be transmitted to the receiver. To achieve

this, the weighting coefficients in (2.10) have to be real and lie between predefined limits, which

leads to the second constraint

pmin ≤ pi ≤ pmax . (2.13)

The optimization problem in (2.11) along with the two constraints in (2.12) and (2.13) is a non-

linear programming problem with a quadratic equality and a linear inequality constraints. Its

solution leads to the precoding matrix PF that is used to process the information data and produce

new transmitted symbols with better spectral emissions.

One of the disadvantages of the subcarrier weighting scheme is the increased computational

complexity incurred on the transmitter, as the precoding matrix PF has to be computed for every

OFDM symbol. Another drawback stems from the fact that after multiplication with the precoding

matrix PF, each subcarrier will have a different amount of power compared to other subcarriers

because of the different weights of the diagonal matrix PF. This unequal transmit power on all

subcarriers leads to degradation in the BER performance, especially in frequency selective channels.

To overcome the impact of the channel selectivity, OFDM signals typically adapt the subcarrier

parameters such as the choice of the modulation scheme and subcarrier power. This is referred

to as bit-power loading, where the total throughput can be maximized by loading subcarriers

that experience low SNR with symbols drawn from a low modulation order, while allocating more

power to those subcarriers that have high SNR. To suppress the spectral sidelobes, the subcarrier

weighting scheme changes the power on each subcarrier. This fact leads to a conflict between

the spectral sidelobe suppression achieved by subcarrier weighting and the capacity maximization

due to the bit-power loading algorithm. A solution to this problem is proposed in [42], where the
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sidelobe suppression problem is viewed as a capacity maximization problem subject to a power

leakage interference constraint.

2.4.1.3 Tone Reservation Techniques

Tone reservation techniques are based on the concept of allocating or reserving some sub-

carriers that are modulated with weighting coefficients calculated in such a way that the total OOB

power leakage is reduced. The weighting coefficients on these subcarriers are calculated based on

either a frequency domain criterion or a time domain criterion. Depending on which criterion is

employed, the location of the reserved subcarriers can be at the edges of the spectrum or spread

throughout the whole spectrum. It should be stressed here that the reserved subcarriers can be any-

where in the spectrum. They do not have to necessarily be at the edges, which is a misconception

as the concept of reserved tones is usually confused with the idea of cancellation carriers; a scheme

that falls under the reserved tones techniques which will be discussed below. The idea of tone

reservation is not new and has long been used before for the purpose of PAPR reduction [43] [44].

2.4.1.3.1 Cancellation Carriers

In the cancellation carriers scheme [45, 46], the reserved tones or so called cancellation

carriers (CC) are located at the edges on both sides of the OFDM spectrum. These subcarriers

do not carry any data information and are modulated with complex weights. The weights are

calculated such that the sidelobes resulting from the cancellation carriers cancel or minimize the

sidelobes of the transmitted data. This same idea has been proposed before in [47], where the

reserved tones are referred to as dummy tones. The only difference is that the weights on the

dummy tones are restricted to only be a weighted sum of the data on the other subcarriers.

To describe the cancellation carriers scheme we follow the same framework in (2.1). Since

the processing in this case is done in the frequency domain, PT is set to the identity matrix. We

also assume that there is a mapping d→ d̄. However since the cancellation carriers are located at

the edges of the spectrum, this mapping affects only the outer data in the vector d and leaves the
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inner data intact. The mapped vector d̄ is written as

d̄ =



p1 0 . . . . . . . . . 0 0

0 p2 . . . . . . . . . 0 0

...
... I1,1

...
...

...
...

. . .
...

...

...
... IN,N

...
...

0 0 . . . . . . . . . p3 0

0 0 . . . . . . . . . 0 p4





1

1

d1
...

dN

1

1



(2.14)

where I is the identity matrix. In this example, only four cancellation carriers are used, two on

each side of the spectrum. The spectral leakage power resulting from the new vector d̄ is

C = ‖APFd‖2 (2.15)

where A holds the interference from every modulated subcarrier in the out-of-band region and is

defined in (2.4). As stated before, the weights pi are calculated such that the power leakage is

minimized. Therefore, the precoding matrix PF is found according to

PF = arg min
PF

‖APFd‖2 (2.16)

Due to the limited transmission power for every OFDM symbol, and since the cancellation carriers

do not carry any data information, the power on these subcarriers is usually bounded below some

defined value. This leads to the following constraint

‖P‖22 < α (2.17)

where P = [p1, p2, p3, p4]
T is the vector holding the weights of the cancellation carriers. The opti-

mization problem in (2.16) along with the constraint in (2.17) is known as a linear least squares
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problem with a quadratic inequality constraint. Readers interested in the solution of the optimiza-

tion problem can refer to [45] and the references therein.

The transformation matrix PF for the cancellation carriers scheme is similar to that of

subcarrier weighting in (2.10). The only difference between the two transformations is that: here

the middle part of the precoding matrix is always the identity matrix, signifying the fact that only

the outer data is affected by the transformation operation. It is these transformed data on the

edges that constitute the cancellation carriers. Also, similar to subcarrier weighting the precoder

PF is not fixed and have to be updated for every OFDM symbol which adds to the computational

complexity of the cancellation carriers scheme. An observation that we would like to make is that the

transformation PF is an orthogonal transformation which preserves the structure of OFDM. This

effectively means that the introduction of cancellation carriers for spectral leakage suppression does

not destroy the orthogonality between subcarriers in OFDM. However, while the transformation in

(2.14) is an orthogonal transformation, it is not orthonormal i.e., its Frobenius norm is not unity,

which is actually part of the reason that it can reduce the spectral leakage power.

Although the orthogonality between subcarriers is preserved by the transformation matrix

in cancellation carriers, the fact still remains that these subcarriers take away some power that

could have otherwise been used by other subcarriers that carry data information. This effectively

reduces the SNR on the data-bearing subcarriers leading to a decreased BER performance. Another

drawback of the cancellation carriers scheme is that its suppression performance is week for wider

inband spectral gaps [48]. This is mainly because the cancellation carriers are usually located at

the band edges, therefore they tend to suppress only those sidelobes closer to edges while the level

of suppression decreases as you move way from the edges of the band. This also means that the

suppression performance of the cancellation carriers scheme is worse in the far away OOB region [49].

Several algorithms aimed at improving the performance of the cancellation were proposed in [50]

and [51]
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2.4.1.3.2 Active Interference Cancellation

Conventionally, subcarriers that are located in the transmission band of PU users are usu-

ally turned off to minimize the interference to PU users. In active interference cancellation (AIC)

schemes [52, 53], these subcarriers are not turned off. Instead, they are active and are calculated

in such a way that the total interference in the PU band is canceled. These subcarriers are known

as active tones. In addition to the active tones, and just as is done in the cancellation carriers

scheme, some subcarriers in the guard bands close to transmission band of PU users are allocated

as cancellation carriers. The intention is to have the total sidelobes from the active tones and the

cancellation carriers oppose the sidelobes resulting from the data subcarriers, leading to minimal in-

terference in the PU band. In [52], the active tones are placed in locations with the same frequency

spacing as the data subcarriers. This is done so that the orthogonality between the active tones and

the data subcarriers is maintained and to avoid inter-carrier interference (ICI). To further improve

the suppression performance of the AIC scheme in [52], the authors in [53] proposed to place the

active tones in locations with smaller frequency spacing than the data subcarriers. However, this

breaks the orthogonality between the data subcarriers and the active tones, potentially leading to

increased ICI. To limit the effects of the resulting ICI, the authors put a constraint on the inter-

ference created by the active tones on the data subcarriers. The sidelobe suppression performance

is traded off with the amount of ICI introduced, with more sidelobe suppression achieved if more

interference is allowed.

2.4.1.3.3 Time Domain Tone Reservation

Similar to N -continuous OFDM [2, 31], a set of reserved tones in [49] are modulated with

complex weights computed in such a way to forceN -continuity between consecutive OFDM symbols.

The only difference between the two schemes is that in N -continuous, all subcarriers are used force

N -continuity, while only a subset of subcarriers are used in this method. Unlike the cancellation

carriers scheme, where the subcarriers are clustered around the edges of the transmission band, the

reserved tones of this scheme can be located anywhere. This comes as a result of the time domain

criterion of forcing continuity, as opposed to the reserved tones in the cancellation carriers scheme
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where the objective is for the cancellation carriers to force notches in the spectrum, therefore

mandating that they be located at the edges of the band. The proposed method achieves deep

sidelobe suppression, however, it suffers from the same drawbacks of the cancellation carriers scheme

such as reduced spectral efficiency and high PAPR.

2.4.2 Time Domain Techniques

Perhaps the most known method for reducing the out-of-band interference in OFDM is

the time-domain windowing method. The default rectangular window used in OFDM has sharp

transitions at the symbol borders. These sharp transitions cause high frequency components in

the frequency domain. Therefore, the main objective of time domain windowing is to smooth

these transitions by multiplying the OFDM symbol with a window function that scales down the

power at the symbol edges. A multitude of window functions can be used for this purpose: hanning,

hamming, gaussian, raised cosine, etc. However, our focus here is on window functions that preserve

the orthogonality between the OFDM subcarriers. This is achieved by designing window functions

such that the useful part of the OFDM symbol, including the CP is not affected or scaled down

by the trailing or leading part of the window function. A widely used window function for shaping

the spectrum of OFDM signals is the raised cosine window defined in [54] as

g(t) =



1
2 + 1

2cos(π + πt
βTs

) , 0 ≤ t ≤ βTs

1 , βTs ≤ t ≤ Ts

1
2 + 1

2cos(π(t−Ts)βTs
) , Ts ≤ t ≤ (1 + β)Ts

, (2.18)

where β is called the roll-off factor and it is a parameter that controls the decay rate of the window

function. Windowing in the context of sidelobe suppression is known as transmit windowing as is

usually implemented by introducing an extension of Nw samples at both the beginning and end of

the OFDM symbol. The window extensions are then shaped by the window function, which can

be any window as long as it preserves the orthogonality between the subcarriers.
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Transmit windowing can be interpreted as a kind of time domain precoding, where the

precoding or transformation matrix PT in (2.1) is a diagonal matrix with the diagonal elements

generated by sampling the window function in (2.18). and PF = I. The length of the window

extensions corresponds to the roll-off factor of the window. More sidelobe suppression is achieved

by increasing the length of the window extensions or the roll-off factor. However, this usually

comes at the expense of some reduction in the throughput. In general, time domain windowing,

while simple and easy to implement, does not achieve sufficient sidelobe suppression unless the

throughput is greatly traded-off. Additionally, windowing does not perform well in small inband

spectral gaps [48], therefore it, might not generate the level of suppression required for OFDM-based

cognitive radio systems.

Similar to the time domain windowing discussed above, the authors in [55] proposed an

algorithm that shapes the signal spectrum using an adaptive window function. In the conventional

windowing method, the same window function is applied to every OFDM symbol. However, the

level of discontinuity or smoothness is different from symbol-to-symbol, i.e., not all symbols have

sharp transitions, just as not all of them have smooth transitions. Therefore, using a fixed window

for all OFDM symbols might not be optimum in terms of spectral suppression. Recognizing this,

an extension is added between every pair of symbols, where the samples of the extension are com-

puted using an optimization algorithm that gives the optimum transition between OFDM symbols.

The spectral suppression of this method is superior to that of the conventional windowing method.

However, due to the adaptive nature of the algorithm where the window extensions have to be

computed for every OFDM symbol, its computational complexity is high which renders it imprac-

tical for real time applications. Another improvement over conventional time-domain windowing

is proposed in [56]. The proposed method provides an improvement in the spectral efficiency and

sidelobe suppression by allowing controllable ISI and ICI between subcarriers. In the conventional

windowing method described above, the same window function is applied to all subcarriers, effec-

tively treating the spectral emissions of all subcarriers the same. However, subcarriers at band

edges usually create more spectral emissions compared to those subcarriers located at the center

of the band. Realizing this fact, the method in [56] proposes the use of heavy windowing on edge
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subcarriers and light windowing on inner subcarriers. Heavy windowing is achieved by increasing

the length of the window extensions applied to edge subcarriers. However, in order to maintain

the spectral efficiency, those extra extensions are stolen from the CP duration of edge subcarriers.

This can potentially create ISI as the CP of edge subcarriers is shortened. Nonetheless, this ISI

can be avoided by proper scheduling of subcarriers in a multi-user environment [57].

2.5 Future Directions

Spectrum shaping is an important research problem that will continue to gain more atten-

tion, especially as we move towards cognitive radio based systems. Viable solutions are still needed

as most of the algorithms proposed to date achieve sidelobe suppression at the expense of other

performance metrics (BER, spectral efficiency, PAPR, complexity). No algorithm achieves the best

trade-off among all performance factors. Additionally, the most promising techniques such as pre-

coding, while they are capable of achieving deep sidelobe suppression and show flexibility in shaping

the power spectrum through the choice of their notching frequencies, their implementation comes

with a huge increase in the computational complexity that renders most them impractical for real

time applications. This is true for other techniques as well, where most of them have computational

complexity that grows with the number of subcarriers used. Given the ever increasing demand for

high data rate transmission which requires the use of more subcarriers to satisfy such a demand.

This means that most of the methods discussed in this review are not suitable for current and future

broadband communications systems. In fact, the only method the offers tractable computational

complexity is the time domain windowing method, however, its suppression performance does not

satisfy the requirements of cognitive radio systems, especially in inner bands unless the spectral

efficiency is significantly traded off. Therefore, there is a need for computationally tractable so-

lutions that offer reasonable sidelobe suppression for the requirements of cognitive radio without

trading off the spectral efficiency.

Recent trends have shown increased interest in FBMC as a replacement for OFDM as the

signaling scheme of choice for the PHY layer of cognitive radios due to the low spectral sidelobes

it offers [58, 59]. However, such a move entails huge changes to the current standards such as
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LTE, WiMax, WiFi, etc, that adopted OFDM in their PHY layer. Moreover, FBMC suffers from

the same complexity issues that OFDM combined with sidelobe suppression algorithms suffers

from. Therefore, we believe that OFDM coupled with better low complexity sidelobe suppression

algorithms is the better option moving forward.

2.6 Conclusions

OFDM has proven its worth in broadband communications and is therefore considered

the signaling scheme of choice for cognitive radio applications due to the many advantages it

offers including simple equalization, spectral efficiency and robustness against multipath fading

channels. Despite these advantages, it suffers from high spectral sidelobes that create significant

interference to users operating in adjacent channels. In this chapter, we presented a review of the

most important sidelobe suppression algorithms and provided a framework under which most of

these algorithms can be explained. We showed the impact of these techniques on the performance

metrics of OFDM. Additionally, we highlighted the limitations of these algorithms and showed

that current solutions for the spectrum shaping problem are not suitable for upcoming broadband

wireless communications systems due to the prohibitive computational complexity that comes along

with the implementation of these methods.
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CHAPTER 3

MASK COMPLIANT PRECODER

3.1 Introduction

Most sidelobe suppression schemes focus on minimizing the out-of-band spectrum or forcing

it to zero. In this chapter1, we question such an approach and instead present a precoder that

renders the power spectrum of OFDM signals below a given SEM. Ultimately, most standards only

require the transmitted signal spectrum to fall under the RF mask. By following this approach,

the distortion added to the information symbols in order to shape the spectrum will be kept at

minimum levels. In essence, only a small adjustment of the information symbols is needed to force

the spectrum below the mask. Our approach improves over the precoder proposed in [1] in that

it maintains almost the same BER probability as uncoded OFDM without the need for any side

information to be transmitted to the receiver.

The rest of the chapter is organized as follows. In Section 3.2, the system model is presented.

We introduce the mask compliant precoder in Section 3.3 and the simulation results in Section 3.4.

Finally, the conclusion is drawn in Section 3.5.

P
re

c
o

d
e
r 

K
-P

o
in

t 
IF

F
T

 

A
d

d
 C

P
 

. 

. 

. 

 

 

 

. 

. 

. 

 

 

 

P
/S

 

Transmitter Receiver 

K
-P

o
in

t 
F

F
T

 

R
e
m

o
v

e
 C

P
 

. 

. 

. 

S
/P

 

 

 

 

Figure 3.1 Block diagram of OFDM transmitter/receiver pair with sidelobe suppression.

1The contents of this chapter were published in [60]. Copyright permission is included in Appendix B.
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3.2 System Model

Consider an OFDM system with K = {k0, k1..., kK−1} subcarriers per symbol as shown in

Figure 3.1. The QAM symbols d = [dk0 , dk1 , ..., dkK−1
]T , where (·)T is the transpose operation, are

fed into the sidelobe suppression precoder to generate a new set of symbols d̄ = [d̄k0 , d̄k1 , ..., d̄kK−1
]T ,

chosen in such a way to provide better spectral emissions. The generated vector d̄ is then used

to modulate the K subcarriers using the inverse fast Fourier transformation (IFFT). The resulting

parallel data stream is transformed to a single stream with the parallel-to-serial (P/S) converter,

and a CP of length greater than the maximum excess delay of the channel is added to combat the

effect of ISI. The expression of the OFDM symbol can then be written as

s(t) =

K−1∑
k=0

d̄ke
j2π k

Ts
tRc(t) , (3.1)

where Rc(t) is a window function and Ts is the effective symbol time. In this work, we only consider

an OFDM system with a rectangular window defined by

Rc(t) =


1 , −T

2 < t < T
2

0 , otherwise

, (3.2)

where T = Ts + Tcp and Tcp is the cyclic prefix duration. At the receiver, the CP is removed and

the data symbols are demodulated with the FFT to produce the received symbols ˜̄d, which are

mapped directly to the original symbols d.

3.3 Mask Compliant Precoder

We will follow the same analysis in [1]. The Fourier transform of the OFDM symbol in (3.1)

is given by

S(f) =

K−1∑
k=0

d̄kak(f) = aT(f)d̄ , (3.3)
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where ak(f) =

∫ T
2

-T
2

e
j2πk
Ts

te−j2πftdt = sinc

(
T (f − k

Ts
)

)
and a(f) = [ak0 (f), ak1 (f), ..., akK−1

(f)]T .

The resulting sinc functions are the main reason that OFDM signals exhibit high sidelobes in the

out-of-band region. According to [1], the power spectrum of (3.1) is obtained as

P (f) =
1

T
E{|S(f)|2} . (3.4)

Instead of forcing the power spectrum to zero, our goal in this chapter is to keep the spectrum at

a set of predefined frequencies in the out-of-band region below a given RF mask. We first sample

the spectrum of the transmitted signal at M frequency locations fm ∈ {f0, f1, ..., fM−1} in the

out-of-band region. After collecting the M samples [S(f0), S(f1), ..., S(fM−1)]
T in the vector S, the

out-of-band spectrum resulting from the precoded symbols d̄ can then be given from (3.3) by

S = Ad̄ , (3.5)

where A = [a(f0),a(f1), ...,a(fK−1)]
T is an M × K matrix with entries ak(fm) representing the

sidelobe interference from the kth subcarrier at the discrete frequency fm in the out-of-band region.

Since our main objective is to control the spectrum emissions under a specified RF mask,

we therefore require the power of every sample in S, i.e., |S(fm)|2, to fall underneath the mask.

Using (3.5), this is equivalent to

|[Ad̄]i|2 ≤ [b]i . (3.6)

where b is an M ×1 vector containing the RF mask samples, [Ad̄]i and [b]i represent the ith entry

of vectors Ad̄ and b, respectively.

There are many solutions d̄ that satisfy (3.6), but we are only interested in the vector d̄

that is closest to the original data vector d in terms of euclidean distance. That is, we require the

precoded symbols to fall in the same decision region as the original data symbols. This is to ensure

that the BER probability is not greatly affected by the precoding operation.
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Our precoder is then the solution to

min
d̄
‖d− d̄‖22 subject to |[Ad̄]i|2 ≤ [b]i . (3.7)

In (3.7), |[Ad̄]i|2 ≤ [b]i imposes M inequality constraints that represent the power spectrum values

at the M frequency locations in the out-of-band region, which can instead be written as

−
√

[b]i ≤ [Ad̄]i ≤
√

[b]i . (3.8)

Alternatively, the M constraints in (3.8) can be represented in a more compact way as

 A

−A


︸ ︷︷ ︸

Ã

d̄ ≤

 √b
√

b


︸ ︷︷ ︸

b̃

, (3.9)

where
√

b is the element-wise square root of vector b. Thus, (3.7) can be rewritten as

min
d̄
‖d− d̄‖22 subject to Ãd̄ ≤ b̃ . (3.10)

The objective function along with the constraints in (3.10) can be cast as a quadratic

programming problem with linear inequality constraints. Its solution leads to a precoder that

properly maps the information symbols d to a new set of symbols d̄, having spectral emissions

fully contained under the RF mask b, and more importantly, it ensures that the new symbols d̄

are close to d in the euclidean distance sense. Many efficient numerical algorithms exist that can

solve such an optimization problem such as the interior-point-convex algorithm [61]. However and

to the best of our knowledge, there is no closed-form solution for the precoder in (3.10), we herein

use numerical methods to evaluate its performance.
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Figure 3.2 Power spectrum under a strict mask.
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Figure 3.3 Power spectrum under a relaxed mask.

33



www.manaraa.com

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal−to−noise ratio [dB]

B
it 

E
rr

or
 R

at
e

 

 
Plain OFDM 16QAM
Plain OFDM QPSK
Proposed precoder QPSK
Proposed precoder 16QAM
Precoder in [1] QPSK
Precoder in [1] 16QAM
Precoder in [1] with adap. mod

Figure 3.4 BER performance of the proposed precoder under a relaxed mask and the precoder [1]
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Table 3.1 Simulation parameters for IEEE 802.22 WRAN.

Parameter Value

Channel bandwidth 6 MHz
FFT size 2048
Number of used subcarriers (K) 1680
FFT window duration (Ts)

896
3 µs

CP duration (Tcp) 28
3 µs

3.4 Simulation Results

Performance of the proposed precoder is investigated using computer simulations. Our

simulation parameters are based on the recent draft of the IEEE 802.22 WRAN standard and are

summarized in Table 3.1. The number of frequency samples in the out-of-band region is set to only

5 samples2 per 1 MHz of bandwidth. To control the sidelobes under the RF mask, we consider a

bandwidth of 7 MHz on each side of the spectrum, resulting in M = 70 samples. We evaluated

the performance of the precoder under both strict and relaxed masks. The power spectral density

of OFDM signals with and without precoding along with the RF mask are provided in Figure 3.2

and Figure 3.3. While the precoder in [1] provides deeper suppression than our proposed precoder

as shown Figure 3.2, this extra suppression is unnecessary and comes at the expense of a loss in

BER performance, as will be discussed below. This is particularly important for the relaxed mask

in Figure 3.3, where only a small distortion added to the information symbols is needed to force

the out-of-band emissions below the mask.

Error probabilities of the proposed precoder and the precoder in [1] are shown in Figure 3.4

and Figure 3.5. Since the distortion added to the information symbols depends on the prescribed

RF mask, the symbols are slightly distorted when the relaxed mask of Figure 3.3 is used, leading

to BER curves similar to those of uncoded OFDM as reported in Figure 3.4. This is in contrast to

the precoder in [1] which heavily distorts the information symbols regardless of the RF mask being

used. Specifically, the proposed precoder improves over the precoder presented in [1] which has an

2Smaller number of samples are possible by choosing pairs of frequencies close to each other. Results in [1] show
that selecting pairs of frequencies close to each other improves the spectral suppression. For example, the frequency
set {±3001 ± 1,±3901 ± 1,±6901 ± 1,±9001 ± 1,±9901 ± 1} kHz achieves the same results as in Figure 3.2 and
Figure 3.3. However, with this choice of smaller samples the information symbols have to be distorted heavily in
order to keep the spectrum under the mask leading to a slight degradation in BER.
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error floor and its performance diverges from uncoded OFDM at around 6 dB SNR for both QPSK

and 16-QAM. A better alternative to the precoder in [1] is the orthogonal multiplexing precoder

presented in [29]. It forces the out-of-band spectrum to zero without causing any degradation in

the BER performance. However, it does so by sacrificing some of the signal dimensions for the

sake of spectral suppression and therefore reduction of the system throughput is unavoidable. By

allowing a slight degradation in the BER, the proposed precoder can be an alternative to the one

in [29] with no reduction in the data rate at all, particularly under relaxed masks.

Although the proposed precoder is capable of containing the spectral emissions under the

more strict mask of Figure 3.2, its BER performance in AWGN channels for 16-QAM deteriorates

compared to plain OFDM. However, it should be noted that the BER for QPSK follows that of

uncoded OFDM for a good range of practical SNR values as shown in Figure 3.5. Furthermore,

these BER curves are obtained with the assumption that the distribution of the distortion vector w,

where w = d− d̄, is Gaussian and the detector used is a minimum distance detector. Nonetheless,

the BER performance can be further improved by considering an optimum detector based on the

statistical properties of the noise vector w. However, this is beyond the scope of this chapter and

we therefore leave such analysis for future studies. In multipath Rayleigh fading channels, the

distortion caused by the channel dominates the small distortion added by the proposed precoder

leading to BER performance similar to that of conventional OFDM as shown in Figure 3.5.

An interesting result, though expected, is that both the precoder (3.10) and the one in [1]

cause more distortion on edge subcarriers in order to suppress the sidelobes. This is particularly

the case since edge subcarriers create more interference in the out-of-band region compared to

inner subcarriers. Consequently, this leads to more errors on edge subcarriers as illustrated by the

error vector magnitude (EVM) per subcarrier in Figure 3.6. Since edge subcarriers are heavily

distorted by the precoding operation, the overall BER performance can be further improved by

using adaptive modulation. The simulation results in Figure 3.4 and Figure 3.5 illustrate the

remarkable improvement in the BER of both precoders when lower order modulation, i.e., QPSK

instead of 16-QAM, is used on the edge subcarriers k ∈ {−840:−800 800:840}. The BER improves

by two orders of magnitude from 10−4 to approximately 10−6 at 20 dB SNR. Certainly, more edge
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subcarriers can be used to further improve the BER curves. However, the price will be paid by some

reduction in the system throughput. Therefore, the proposed method when combined with adaptive

modulation based on subcarrier EVM values, provides a trade-off between error performance and

spectral efficiency. It’s worth noting that adaptive modulation is not needed in the case of a relaxed

mask as the BER curves are virtually the same as uncoded OFDM.

Unlike the precoders in [1] and [29], the proposed precoder needs to search for the proper

symbols for each OFDM signal by solving the quadratic program in (3.10). This might lead to an

increase in the computational complexity. However, algorithms such as the interior-point-convex

method can solve quadratic programming problems such as the one in (3.10) in a polynomial time

if the coefficient matrix of the objective function is positive definite. Fortunately, the coefficient

matrix of the objective function in (3.10) is the identity matrix, which is positive definite, leading to

significant reduction in the computational complexity. In addition, the computational complexity of

the proposed precoder grows with the dimension of the matrix A. However, since edge subcarriers

contribute significantly to the out-of-band emissions, the complexity can be reduced by considering

only the out-of-band contributions from edge subcarriers in the matrix A. The price paid for this

reduction will be some loss in BER performance, since edge subcarriers will be extremely distorted

in order to the suppress the sidelobes, as opposed to when all subcarriers are used. Furthermore,

instead of requiring the power spectrum to fall below the RF mask at individual frequency locations

in the out-of-band region, a different metric such as ACLR can be used. By requiring the average

power spectrum, i.e., ACLR to be below a given value, the computational complexity can be reduced

significantly.

3.5 Conclusion

A precoder that forces the power spectrum of OFDM signals under a given RF mask is

proposed. The proposed precoder provides significant improvement in BER performance compared

to the precoder in [1], especially when operating under relaxed masks. Although the BER perfor-

mance deteriorates under strict masks for 16-QAM, it remains virtually unaffected in the case of

QPSK for a good range of practical SNR values. Moreover, with the use of adaptive modulation,
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Figure 3.6 EVM per subcarrier for the proposed precoder and the precoder in [1] for QPSK.

the BER performance under strict masks can be further improved. Finally, the proposed precoder

does not require the transmission of any side information to the receiver.
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CHAPTER 4

SUPPRESSING ALIGNMENT: JOINT PAPR AND OUT-OF-BAND
POWER LEAKAGE REDUCTION FOR OFDM-BASED SYSTEMS

4.1 Introduction

In this chapter, we target the joint reduction of both PAPR and OOB emissions of OFDM

signals. Almost all existing solutions for the OOB leakage reduction suffer from either a spectral

efficiency loss or BER degradation. Furthermore, most spectral suppression algorithms ignore the

issue of high PAPR, an inherent characteristic of OFDM waveforms. As a result, the gains in OOB

leakage reduction provided by these algorithms might be misleading, i.e., the spectral sidelobes

can potentially grow back up after the high peak power transmitted signal passes through the PA.

Therefore, and for the reasons outlined above, particularly the spectral regrowth problem, we believe

that the best way is to address the two problems jointly as done in [44, 62–64]. Following this path,

we herein propose a novel algorithm, that we call suppressing alignment, for the joint suppression

of both the OOB leakage and PAPR without any reduction in the transmission rate. Our algorithm

exploits the temporal degrees of freedom provided by the CP, a necessary redundancy in OFDM

systems, to properly design a suppressing signal that can effectively reduce both the OOB power

leakage and PAPR of the OFDM signal. In particular, our approach adds another dimension to

the use of the CP. Traditionally, the CP has been exploited mainly to mitigate the impact of ISI

in multipath fading channels. In this work, we extend that functionality by also utilizing the CP

for the purpose of spectral emissions suppression and PAPR reduction. Besides exploiting the CP,

our design also utilizes the wireless channel to align the generated suppressing signal with the CP

duration of the OFDM symbol at the receiver. By doing so, the suppressing signal will not cause

any interference to the data portion of the OFDM symbol. From an interference point of view,

the data carried in the OFDM symbol appears to be corrupted by the suppressing signal at the
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transmitter. However, after passing through the channel, the suppressing signal is perfectly aligned

with the CP. In light of such alignment, the data portion of the OFDM symbol appears completely

free of interference to the receiver. Thus, after discarding both the CP and the aligned suppressing

signal through a simple CP removal operation, the receiver can decode the data with an error

performance similar to that of standard OFDM. In addition to maintaining a spectral efficiency

and error performance similar to plain OFDM, another advantage of our approach is that it does

not require any change in the receiver structure of legacy OFDM.

Similar approaches, albeit for different purposes, have previously been proposed in [65]

for interference alignment in two-tierd networks, in [66] for improving the secrecy rate of OFDM

systems, and very recently in [67] for energy harvesting. Nevertheless, we believe that this is the first

approach that exploits such a design for the purpose of spectral emissions and PAPR containment.

The rest of the chapter is organized as follows. In Section 4.2, the system model is intro-

duced. The concept of suppressing alignment and its application to the reduction of OOB leakage is

presented in Section 4.3. The joint reduction of OOB leakage and PAPR is presented in Section 4.4.

In Section 4.5, we provide the numerical results and finally the conclusion is provided in Section

4.6.

In this chapter, IN is the N ×N identity matrix; 0N×M is an all zeros N ×M matrix. The

transpose and conjugate transpose are denoted by (·)T and (·)H, respectively, and ‖ · ‖2 denotes the

2-norm. E[·] denotes the expectation operator while ker (·) denotes the kernel of the matrix. The

field of real and field of complex numbers are represented by R and C, respectively. CN (µ,Σ) is

the complex Gaussian distribution with mean µ and covariance matrix Σ.

4.2 System Model

We consider a single link OFDM system consisting of a transmitter and a receiver commu-

nicating over a Rayleigh multipath channel as shown in Figure 4.1. For ease analysis and without

any loss of generality, we assume an adjacent user, employing OFDM or any other technology,

operating over a bandwith spanning K subcarriers within the transmission band of the OFDM

system. Therefore, the OFDM transmitter/receiver pair should control their transmissions such
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Figure 4.1 System model of an OFDM transmitter and receiver with suppressing alignment.

that minimal interference is caused to this adjacent user. Let the total number of subcarriers be N ,

where the subcarriers spanning the adjacent user band, i.e., {i+ 1, ..., i+K}, are deactivated. The

remaining active subcarriers {1, ..., i}∪{i+K+1, ..., N−1}, whereas the DC subcarrier is disabled,

are modulated by the set of QAM symbols contained in the vector d ∈ CN×1. To mitigate the

effects of ISI, a CP of length L samples, which is assumed to be larger than the maximum delay

spread of the channel, is added to the start of the OFDM symbol. The resulting time domain

OFDM signal is expressed in vectorized form as

x = [x1, ..., xN+L]T = AFHd , (4.1)

where F is the N -point discrete Fourier transformation (DFT) matrix, and A ∈ R(N+L)×N is the

CP insertion matrix defined as

A =

0L×N−L IL

IN

 .

To control the spectral emissions of the transmitted signal as well as its PAPR, the OOB-PAPR

suppression block generates a time-domain suppressing signal c = [c1, ..., cN+L]T with the same

length as the OFDM signal, i.e., c ∈ C(N+L)×1. Furthermore, let the suppressing signal c be
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expressed as

c = Ps , (4.2)

where P ∈ C(N+L)×L and s ∈ CL×1. The transmitted signal is then given as

t = x + c = AFHd + Ps . (4.3)

The design of both s and P will be discussed in detail in the following section; however for the time

being, it suffices to say that c = Ps will be designed to suppress both the spectral sidelobes and

PAPR of the transmitted signal.

4.3 Suppressing Alignment

In this section, we introduce the concept of suppressing alignment and discuss its use in

suppressing the spectral emissions of the transmitted OFDM signal. The application of suppressing

alignment in reducing the PAPR will be discussed in the next section. Our main aim in this section

is to construct the suppressing signal c in (4.3) so that the transmitted signal has better spectral

emissions compared to conventional OFDM signals. More specifically, the suppressing signal c or

equivalently (Ps) is designed under two goals in mind: 1) to minimize the OOB power leakage of the

transmitted signal in the adjacent band and 2) to avoid causing any interference to the information

data carried by the OFDM symbol, in the sense that the receiver is able to recover all information

data sent by the transmitter. In the subsequent discussion, the vector s will be designed to fulfill

the first requirement while the matrix P is designed to satisfy the latter.

We first consider the construction of the matrix P. Since the suppressing signal is added to

the OFDM signal before transmission in (4.3), the information data carried by the OFDM signal

is distorted and the receiver might not be able to recover the data if the suppressing signal is not

properly designed. To achieve such proper design, we need to examine the received signal at the

receiver after passing through the channel.
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Let the channel between the transmitter and receiver be an i.i.d. Rayleigh fading channel

represented by the vector h =[h0, ..., hl] ∼ CN (0, Il+1/(l + 1)). We can then express the received

signal as

r = Ht + n , (4.4)

where H ∈ C(N+L)(N+L) is a Toeplitz matrix used to model the convolution between the transmitted

signal t and the channel h and is given by

H =



h0 0 · · · 0 hl · · · h1
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . hl

hl · · · · · · h0 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

...

0
. . . 0 hl · · · · · · h0


,

and n ∈ C(N+L)×1 ∼ CN (0, σ2IN+L) is an additive white Gaussian noise (AWGN) vector. Assum-

ing perfect synchronization and after the serial-to-parallel (S/P) conversion, the receiver removes

the first L CP samples and then applies DFT. Using (4.3), the received signal after CP removal

and DFT operation can be written as

y = FBHt + n̄ = FBHAFHd + FBHPs + n̄ , (4.5)

where B ∈ RN×(N+L) is the CP removal matrix and n̄ ∈ CN×1 is a noise vector obtained after

removing the first L samples from n and applying the DFT.

We are now ready to address the design of the matrix P by examining (4.5). As stated

before, our goal in designing P is that the interference caused by the added suppressing signal
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should be zero at the receiver. Therefore, the following must hold true

FBHPs = 0 . (4.6)

If (4.6) is satisfied, then, the received vector y in (4.5) becomes similar to legacy OFDM received

data and the receiver would be able to apply single-tap equalization to recover the information

symbols. Essentially, the information data in the vector d experiences zero interference from the

suppressing signal.

Assuming perfect channel state information (CSI) at the transmitter, it is clear from (4.6)

that if P belongs to the null-space of the matrix BH, i.e., ker (BH), then (4.6) is satisfied regardless

of the value of the vector s. Using the rank-nullity theorem, the dimension of the null-space of

BH ∈ CN×(N+L) is obtained as dim (ker (BH)) = N +L− rank((BH)) = L, since rank(BH) = N .

Hence, by choosing P such that its columns span ker (BH), the condition in (4.6) is satisfied and

the receiver can recover the data using legacy OFDM reception. Accordingly, we design P such

that

span(P) = ker (BH) , (4.7)

which is accomplished by choosing the columns of P as an orthogonal basis of ker (BH). Using the

singular value decomposition, BH can be factorized as

BH = UΣVH , (4.8)

where U ∈ CN×N , Σ ∈ CN×(N+L) is a diagonal matrix holding the singular values of BH, and

V ∈ C(N+L)×(N+L). If V is expressed as

V =[v0 v1 ... vN+L−1] ,
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then the last L columns of V constitute an orthogonal basis that spans the null-space of (BH).

Therefore, P is chosen as

P =[vN vN+1 ... vN+L−1] . (4.9)

We remark that such construction of P allows interference-free transmission and is in principle sim-

ilar to interference alignment (IA) [68]. In particular, P aligns the interference from the suppressing

signal to the portion of the OFDM symbol spanned by the CP as shown in Figure 4.1.

We now consider the design of the vector s. Before we go into the details of our proposed

method, let’s first examine the interference caused by the transmitted signal (4.3) over the K

subcarriers occupied by the user in the adjacent band. The signal spectrum of the transmitted

signal (4.3) is given as

St = FζN,β(AFHd + Ps) , (4.10)

where ζ is the upsampling factor, i.e., ζ samples per subcarrier are considered, β = N + L, and

FζN,β is an ζN × β DFT matrix. Using (4.10), the interference in the adjacent band can be given

as

IK = FK(AFHd + Ps) = FKAFHd︸ ︷︷ ︸
Fd

+FKP︸ ︷︷ ︸
Fs

s , (4.11)

where FK is a sub-matrix of FζN,β containing only the rows that correspond to the subcarriers

occupied by the adjacent user. The first term in (4.11) represents the OOB power leakage from the

information data and the second term is the OOB power leakage from the suppressing signal c. To

minimize the interference power in the adjacent band, we calculate s such that

s = arg min
s
‖Fd + Fss‖2 subject to ‖s‖22 ≤ ε , (4.12)
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where ε is a power constraint on the vector s to avoid spending too much power on the suppressing

signal. We note here that the power of the suppressing signal c is equal to the power of the

vector s since P is an orthogonal matrix. The optimization problem in (4.12) is known as a least

squares with a quadratic inequality (LSQI) problem. To solve this problem, we first consider the

unconstrained least squares problem, i.e., without the power constraint. The solution to the least

squares problem is

s = −(Fs
HFs)

−1Fs
HFd . (4.13)

It is clear that the calculated s in (4.13) is also the solution to the problem in (4.12) if ‖s‖22 ≤ ε,

and in this case we have an analytical solution. However, if ‖s‖22 ≥ ε, then there is no analytical

solution and in order to solve the problem, we have to consider the following unconstrained problem

s = arg min
s
‖Fd + Fss‖2 + λ0‖s‖22 , (4.14)

where λ0 > 0 is the Lagrange multiplier. The solution in this case is

s = −(Fs
HFs + λ0I)−1Fs

HFd . (4.15)

For a proper Lagrange multiplier, which can be found using the bi-section search algorithm [69],

‖s‖22 = ε. Alternatively, (4.12) can be solved numerically using any of the publicly available

optimization solvers.

4.4 Joint PAPR and OOB Power Leakage Reduction

PAPR is an important metric for multi-carrier systems. Any increase in the PAPR might

drive the power amplifier at the transmitter to operate in the non-linear region. This can potentially

cause spectral regrowth in the sidelobes, erasing any OOB reduction gains achieved before the power

amplifier. Therefore, as an extension to the results in the previous section, we propose to jointly

minimize the PAPR and OOB power leakage to avoid such problem.
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The PAPR of the transmitted signal is the ratio of the maximum instantaneous power to

the average power which is given as

PAPR =
‖t‖2∞
1

(N+L)‖t‖
2
2

=
‖x + Ps‖2∞
1

(N+L)‖x + Ps‖22
. (4.16)

Accordingly, to minimize the OOB interference as well as the PAPR, we extend the optimization

problem in (4.12) as follows

s = arg min
s

(1− λ)‖Fd + Fss‖2 + λ‖x + Ps‖∞ ,

subject to ‖s‖22 ≤ ε ,
(4.17)

where the weighting factor, λ ∈ [0, 1], is for controlling the amount of minimization for both OOB

power leakage and PAPR. This adaptation parameter can be flexibly adjusted to emphasize one

problem over the other depending on the system design requirements. For example, when λ = 0, the

objective function turns into a pure OOB power leakage reduction problem and (4.17) is equivalent

to (4.12). On the other hand, (4.17) is a pure PAPR reduction problem when λ = 1. Similar to

(4.12), the amount of power consumed by the suppressing signal is controlled by ε.

Both the objective function and the constraint in (4.17) are convex which renders the

problem as a convex optimization problem that can easily be solved numerically by any convex

optimization solver. In this work, we utilize YALMIP [70], a free optimization package that is

easily integrated with MATLAB, and MOSEK [71] as the underlying solver to obtain a numerical

solution to (4.17).

4.5 Numerical Results

In this section, we evaluate the OOB reduction as well as the PAPR performance of the

proposed method with computer simulations. For simulation tractability, we consider an OFDM

system with N = 64 subcarriers and a CP length of L = 16 samples. Additionally, we assume

that the OFDM transmitter detects an adjacent user spanning 10 subcarriers within its band of

transmission. Thus, these subcarriers are disabled by the OFDM system, while the remaining sub-
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Figure 4.2 Power spectral density for 4-QAM.

carriers are utilized for transmission. The transmission is carried through a multipath Rayleigh

fading channel with L + 1 taps and a uniform power delay profile (PDP). To illustrate the OOB

power leakage reduction performance of the proposed method, 104 M -QAM symbols are generated

randomly, where M = 4 for QPSK or M = 16 for 16-QAM, and the Welch’s averaged periodogram

method is then used to estimate the power spectrum. We evaluate the the PAPR reduction per-

formance using the complimentary cumulative distribution function (CCDF). Furthermore, in all

simulations, we constrain the power of the suppressing signal to be a fraction of the power of the

plain OFDM signal, i.e., ε = α‖x‖22, where α is a parameter that controls the power allocated to

the suppressing signal.

4.5.1 PAPR and OOB Power Leakage Reduction Performance

First, we evaluate the OOB power leakage reduction of the proposed method based on

(4.12), without considering the PAPR reduction. As shown in Figure 4.2, the proposed method

achieves remarkable levels of OOB power leakage reduction compared to plain OFDM. We also
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note that the amount of OOB power leakage reduction increases as α increases, i.e., as more power

is allocated to the suppressing signal. For example, a 10% power increase in the transmitted signal

power (α = 0.1) reduces the OOB leakage by roughly 18 dB, while approximately 22 dB reduction

is obtained for a 25% power increase. By examining Figure 4.2, we observe a slight overshoot in

the spectrum close to the band edges, especially as α grows. This can be attributed to the fact

that the suppressing signal puts more power on the subcarriers close to the edges because of their

high contribution to the OOB power leakage.

Figure 4.3 shows the trade-off between the PAPR reduction and OOB reduction performance

for the joint optimization problem in (4.17). The trade-off is visualized by showing the average

reduction in both OOB leakage and PAPR as a function of the adaptation parameter λ when α

is set to 0.25. We note that when λ = 0, the optimization problem (4.17) is equivalent to (4.12),

where only the OOB interference is minimized. The average reduction in OOB interference in this

case is approximately 22 dB, which agrees with the results in Figure 4.2 when α = 0.25. Increasing

λ beyond zero, reduces the gain in terms of OOB leakage reduction while gradually improving the

PAPR reduction performance. As shown in Figure 4.3, a maximum average PAPR reduction of

more than 3 dB is obtained when λ = 1. However, in this case, and as expected, there is no gain in

the OOB interference reduction. In fact, the OOB power leakage increases due to the fact that the

suppressing signal places some power in the adjacent band. The same is true when λ = 0, where a

pure OOB leakage reduction leads to a slight increase in the PAPR as shown in Figure 4.3. The

OOB power leakage reduction for different values of λ is shown in Figure 4.4. Here, the power of

the suppressing signal is fixed at 25% of the original OFDM signal, i.e., α = 0.25. These results

in Figure 4.4 expand over the mean OOB reduction results in Figure 4.3 by showing the actual

power spectral density of the transmitted signal. As seen from Figure 4.4, the OOB leakage is

significantly reduced as λ decreases, which is rather expected as more emphasis is put on the OOB

leakage reduction relative to the PAPR reduction. In order to understand the behavior of the

joint optimization problem in (4.17) with regard to the actual power allocated to the suppressing

signal, we plot the average power of the suppressing signal against α for different values of the

adaptation parameter λ, as shown in Figure 4.5. The results in Figure 4.5 indicate that when
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Figure 4.5 Power of suppressing signal for different values of λ.

the PAPR is not considered, i.e., λ = 0, the actual power used by the suppressing signal changes

linearly with α. In other words, all power allocated to the suppressing signal will be completely

utilized to reduce the spectral sidelobes. However, as the PAPR reduction is slowly factored into

the problem, the utilization of the allocated power decreases. Specifically, we observe that as the

adaptation parameter λ increases gradually, the suppressing signal uses less power to jointly reduce

both PAPR and spectral leakage. For the extreme case of λ = 1, i.e., when it is a pure PAPR

reduction problem, the power of the suppressing signal completely saturates regardless of how much

power is allocated through the parameter α.

We now turn to characterizing the performance of the proposed method with regard to

PAPR reduction. In order to do that, we consider the actual instantaneous power distribution of

the transmitted signal and plot its CCDF as shown in Figure 4.6 and Figure 4.7. In Figure 4.6,

we show the PAPR performance for different values of λ and a fixed α = 0.25. We start by noting

that remarkable reduction in the PAPR is obtained as shown in Figure 4.6. In particular, this

reduction increases as the adaptation parameter λ grows, i.e., the PAPR reduction is emphasized
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Figure 4.6 PAPR performance for 4-QAM when α = 0.25.

compared to the power leakage reduction. For example, in the extreme case of λ = 1, the PAPR

of the transmitted signal is around 7 dB at a probability of 10−3; a reduction of approximately 3.5

dB from that of the plain OFDM signal. However, there is no reduction in the OOB interference

when λ = 1. Nonetheless, decent improvements in the PAPR performance can still be obtained

even for small values of λ while simultaneously allowing large reductions in the OOB interference.

For example, when λ is set to 0.25, the PAPR of the transmitted signal is around 9.5 dB compared

to 10.5 dB for plain OFDM. At the same value of λ, the OOB power of the transmitted signal is

around −39 dB compared to −19 dB for plain OFDM; a 20 dB reduction as shown in Figure 4.4.

The variation of the PAPR performance with the power of suppressing signal is shown in Figure 4.7.

In the extreme case of having a suppressing signal with the same power as the OFDM signal, i.e.,

when α = 1, the PAPR is reduced by approximately 4 dB at a probability of 10−3. Alternatively,

for α = 0.25, the PAPR is reduced by approximately 1.5 dB, showing that a slight increase in the

power of the transmitted signal can still lead to good reduction in the PAPR.
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Figure 4.7 PAPR performance for 4-QAM when λ = 0.5.

The performance of the proposed suppressing alignment scheme in reducing both the OOB

power leakage and PAPR depends on the PDP of the wireless channel. The results presented so

far are based on a uniform PDP. Thus, to quantify the impact of the PDP of the wireless channel,

we also evaluate the performance under an exponentially decaying PDP with a decaying constant1

set to 2. The effect of the PDP on the OOB power leakage reduction is shown in Figure 4.8 for

16-QAM. As evident in Figure 4.8, there is a noticeable degradation in the OOB power leakage

reduction when the channel has an exponentially decaying PDP. A similar outcome is expected for

the PAPR performance as shown in Figure 4.9. These results show that a uniform PDP gives more

degrees of freedom in suppressing the OOB power leakage compared to that of an exponentially

decaying PDP.

1 E[hl]
E[h0]

= exp(−l
2
), l = 0, ..., L .
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Figure 4.8 Power spectral density for 16-QAM for α = 0.25, λ = 0.
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Figure 4.9 PAPR performance for 16-QAM for α = 0.25, λ = 1.
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4.5.2 Imperfect Channel State Information

In a practical environment, the assumption of perfect channel knowledge might not be

valid. Therefore, in this subsection we evaluate the performance of the proposed algorithm when

the transmitter has imperfect CSI. The channel is estimated at the receiver and the CSI is fed

back to the transmitter. The transmitter then uses this CSI to generate the suppressing signal

c = Ps. To evaluate the impact of channel estimation errors, we assume that the channel used

at the transmitter is different than the real channel that the signal is transmitted through. We

quantify the error in channel estimation by the mean square error (MSE) defined as

MSE = E[
1

N

N∑
k=1

|Ĥ(k)−H(k)|2] , (4.18)

where k is the subcarrier index and Ĥ(k) is the erroneous channel given by

Ĥ(k) = H(k) + e(k) , (4.19)

where the estimation error e(k) is modeled as a complex Gaussian random variable with zero mean

and variance σ2e equal to the MSE in (4.18). This simple model has previously been used in [72] to

roughly evaluate the impact of imperfect CSI.

The received signal after CP removal and DFT operation is given by (4.5), where the

precoding matrix P is designed based on knowledge of the channel at the transmitter. If the

channel communicated back to the transmitter by the receiver is erroneous, then P is designed

based on Ĥ as opposed to the true channel H. Therefore, the second term in (4.5) would not

vanish, i.e., (4.6) is not true any more. This effectively means that the suppressing signal leaks

into the data part of the OFDM symbol instead of precisely being aligned with the CP duration.

Nevertheless, the erroneous channel information does not effect the OOB power leakage and PAPR

reduction performance of the proposed method, since the suppressing signal is still designed based

on (4.12) or (4.17).
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Using the simplified model above, we conducted Monte Carlo simulations to assess the

impact of this leakage on the BER performance of the proposed algorithm for different values of

SNR as shown in Figure 4.11. Our simulations are bench-marked against the error performance

of plain OFDM under the same noisy channel estimation. As observed in Figure 4.11, the error

performance of the suppressing alignment algorithm is identical to that of standard OFDM under

channel estimation errors. This can be explained by looking at Figure 4.10. There, the average

power leakage of the suppressing signal into the data part of the received OFDM symbol, defined

as

Q = E[‖BHPs‖22] , (4.20)

is plotted against the MSE of the channel for different values of α. In Figure 4.10, the leaked power

is at least 8 dB less than the channel MSE when α = 0.25. Essentially, the noisy channel dominates

the error performance. As such, no degradation in the BER is observed as shown in Figure 4.11

when α = 0.25.

4.6 Conclusion

In this chapter, we have proposed an approach called suppressing alignment that generates

a suppressing signal to jointly reduce the OOB power leakage and PAPR of OFDM-based systems.

The main advantage of the proposed approach is that it does not reduce the spectral efficiency as

it exploits the inherent redundancy in OFDM provided by the CP. We have also shown that the

suppressing signal can be constructed in such a way that it does not create any interference to

the information data carried in the OFDM symbol. In particular, by utilizing the wireless chan-

nel, the suppressing signal is aligned with the CP duration at the receiver, effectively creating an

interference-free transmission with a BER performance similar to legacy OFDM without requir-

ing any change in the receiver structure. The effectiveness of the proposed approach in obtaining

remarkable reduction in both the OOB power leakage and PAPR is shown with computer simula-

tions. We showed the performance trade-off between the OOB power leakage reduction and PAPR
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Figure 4.10 Leaked power of the suppressing signal under imperfect CSI, λ = 0.5.
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Figure 4.11 BER performance under imperfect CSI, λ = 0.5, α = 0.25.
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reduction where both can flexibly be controlled though an adaptation parameter. Furthermore,

we investigated the impact of imperfect CSI on the error performance of the proposed approach.

The simulation results show no degradation in the BER performance of the proposed approach

compared to legacy OFDM under the same noisy channel errors.
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CHAPTER 5

TWO ERROR VECTOR MAGNITUDE COMPLIANT PRECODERS FOR
OUT-OF-BAND POWER LEAKAGE REDUCTION IN OFDM BASED SYSTEMS

5.1 Introduction

Out of all the reported OOB reduction algorithms in the literature, precoding schemes are

the most effective in achieving significant suppression of the OFDM spectral emissions. However,

since precoding typically changes the transmitter structure of OFDM, side information regarding

the precoder needs to be sent to the receiver for it to be able to decode the information symbols.

The side information is usually large, as the precoder is typically a full matrix with dimensions as

large as the transmitted data itself. This can potentially result in huge reduction in the transmission

rate, especially if the precoder information needs to be transmitted frequently, as usually the case

in cognitive radio scenarios where the spectral resources change regularly making it necessary to

recalculate the precoder.

In this chapter, we also consider precoding for reducing the OFDM spectral sidelobes.

However, we target the design of precoders where the receiver does not need to know any information

about the precoding done at the transmitter to be able to recover the information symbols. Such

a design can significantly improve the spectral efficiency of the system as no resources are wasted

in sending any side information to the receiver. The receiver can usually decode the information

symbols with acceptable error probabilities if the precoded data falls within particular constellation

errors [73], typically specified by the OFDM standard in the form of an EVM limit. Therefore, our

focus in this chapter is on precoders that minimize the OOB emissions under a hard constraint on

a specified EVM which is typically provided as a root mean square (RMS) value [74].

The rest of the chapter is organized as follows. In Section 5.2, the system model is intro-

duced. In Section 5.3, we present the two EVM compliant precoders for reducing the OOB power
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Figure 5.1 System model.

leakage of OFDM. The numerical results are provided in Section 5.4 and finally the conclusion is

given in Section 5.5.

In this chapter, IK is the K ×K identity matrix. The transpose and conjugate transpose

are denoted by (·)T and (·)H, respectively. ‖ · ‖2 denotes the 2-norm while the Frobenius norm is

denoted by ‖·‖F. The expectation operator is denoted by E[·] while the trace of a matrix is denoted

by Tr{·}.

5.2 System Model

We consider an OFDM system with K subcarriers where a precoder is introduced in the

transmitter for the purpose of reducing the spectral emissions of the signal as shown in Figure 5.1.

The transmitter in this case is different than a legacy OFDM transmitter due to the introduction

of the precoder block. The purpose of the precoder block is to pre-process the data stream d by

a K × K matrix P with the objective of generating new transmission data with better spectral

emissions. The resulting data vector s after precoding is expressed in a matrix form as

s = Pd . (5.1)

The precoder vector s is then used to modulate the available K subcarriers using the DFT block.

After DFT, the resulting parallel stream is converted to a serial stream and a CP of length larger

than the maximum excess delay of the channel is appended to the start of the serial stream in order
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to mitigate the detrimental effects of ISI. The generated OFDM signal is then written as

x(t) =
K−1∑
k=0

ske
j2π k

Ts
tRc(t) , (5.2)

where Ts is the useful duration of the OFDM symbol, sk is the kth element of the vector s and

Rc(t) is a rectangular window function defined as

Rc(t) =


1 , −T

2 < t < T
2

0 , otherwise

(5.3)

and T = Ts + Tcp, where Tcp is the CP duration. The CP is removed at the receiver and the

remaining data is fed to the inverse discrete Fourier transformation (IDFT) block to generate an

estimate of the precoded vector s, which is then passed to the detector for direct mapping to the

original quadrature amplitude modulation (QAM) symbols.

The OOB power leakage contribution of the kth subcarrier at some frequency f outside

the designated band of transmission is found by taking the Fourier transform on the rectangular

windowed kth subcarrier as follows:

ak(f) =
1

Ts + Tcp

∞∫
−∞

Rc(t)e
j 2πk
Ts

te−j2πft dt = sinc

(
T (f − k

Ts
)

)
, (5.4)

accordingly, the total OOB leakage from all subcarriers modulated by the vector s in M discrete

frequency locations fm ∈ {f0, f1, ..., fM−1} is written in a matrix form as

Fs = As = APd , (5.5)

where A is an M ×K matrix with entries ak(fm) representing the OOB power leakage from the

kth subcarrier at some discrete frequency fm outside the transmission band. The average OOB
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power leakage can thus be expressed as

Sa = E{‖APd‖22} = Tr{E{APddHPHAH}} =

Tr{APPHAH} = Tr{PHAHAP} .
(5.6)

The last result in (5.6) is due to E{ddH} = IK . Since Tr{PHAHAP} = ‖AP‖2F, therefore minimiz-

ing the average OOB power leakage corresponds to minimizing the Frobenius norm of the matrix

AP.

5.3 Precoding Schemes

In this section, we design two precoders, a full rate EVM compliant precoder which we will

refer to as precoder A, and another EVM compliant precoder with free subcarriers which we refer

to as precoder B. First we start by presenting precoder A.

5.3.1 Precoder A

We start by designing the precoder P that minimizes the average spectrum in (5.6) while

satisfying a desired EVM constraint. The average EVM measures the error between the ideal

constellation vector d and the constellation vector that is actually transmitted s, and is defined as

EVM =

√
E{‖d− s‖22}
E{‖d‖22}

=

√
E{‖(IK −P)d‖22}

K
. (5.7)

As stated above, the goal here is to design the precoder P under the constraint of a given EVM.

Therefore the desired precoder P is the solution to the following optimization problem

P = arg min
P

Tr{PHAHAP}

subject to E{‖(IK −P)d‖22} ≤ α ,
(5.8)
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where α is given by

α = (EVMmax)2K. (5.9)

The maximum EVM, i.e., EVMmax is usually specified by the wireless standard [75]. To get rid of

the data dependency of the constraint in (5.8), we can further expand it as

E{‖(IK −P)d‖22} = Tr{E{(IK −P)ddH(IK −P)H}}

= Tr{(IK −P)(IK −P)H} = K − 2Tr{P}+ Tr{PPH} ≤ α . (5.10)

Due to the symmetry of the rectangular window function in (5.3), the OOB power leakage matrix

A is real. Therefore the precoder P is also real and PH = PT , AH = AT. Now we can re-write the

problem in (5.8) as

P = arg min
P

Tr{PTATAP}

subject to K − 2Tr{P}+ Tr{PPT} ≤ α .
(5.11)

In order to solve the optimization problem (5.11), let us define

φ = Tr{PTATAP}, ψ = K − 2Tr{P}+ Tr{PPT} − α . (5.12)

Using the Lagrange multipliers method, we seek λ ∈ R such that

∇Pφ+ λ∇Pψ = 0 , (5.13)

where ∇P is the gradient operator with respect to the matrix P and λ > 0 is the Lagrange

multiplier. From [76], we have the following three properties regarding the derivative of the trace

with respect to a matrix X

∂

∂X
Tr{X} = I , (5.14)
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∂

∂X
Tr{XTYX} = YX + YTX , (5.15)

and

∂

∂X
Tr{XTX} = 2X . (5.16)

Let X = P and Y = ATA, therefore

∇Pφ+ λ∇Pψ =
∂

∂X
Tr{XTYX}+ λ

∂

∂X
(K − 2Tr{X}+ Tr{XXT } − α) = 0 , (5.17)

using the derivative properties of the trace above, we obtain

YX + YTX + λ(−2I + 2X) = 0 , (5.18)

therefore if we substitute for X and Y we get

ATAP + ATAP + 2λ(P− I) = 2ATAP + 2λ(P− I) = 2ATAP + 2λ(P− I) = 0 , (5.19)

Hence,

P =

(
1

λ
ATA + I

)−1
. (5.20)

For a given α or an EVM value as defined in (5.9), λ is found such that it satisfies the constraint

in (5.11). First, let X = ATA, clearly X is a symmetric matrix which makes P also symmetric.

Furthermore, let γj(Y) be the eigenvalues of any symmetric matrix Y. Therefore, since (I−P)T =

I−P because P is symmetric, we have

Tr{(I−P)(I−P)T } =
∑
j

γ2j (I−P) . (5.21)
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Figure 5.2 System model for precoder B.

Since γj(I−P) = 1− γj(P) = 1− 1
1
λ
γj(X)+1

, λ is the solution to the following

∑
j

(
1− 1

1
λγj(X) + 1

)2
= α . (5.22)

We note here that once λ is determined, the precoder P is fixed and is independent of the data sym-

bols for a given spectral occupancy. Moreover, since the precoder P produces symbols with EVM

that falls within limits predetermined by the OFDM standard, the receiver will have satisfactory

BER performance without changing the receiver structure of classical OFDM if the transmitter

uses error-correction codes [73]. It is worth noting that the EVM compliant precoder in (5.20) is a

full rate precoder that does not reduce the transmission rate.

5.3.2 Precoder B

In this subsection, we design another precoder that enhances the OOB leakage performance

of precoder A, albeit at the expense of some reduction in the system transmission rate, by utilizing

some subcarriers at the edges of the transmission band as free subcarriers as shown in Figure 5.2.

The weights of the free carriers are calculated as a function of the information data. This choice

helps in making the precoder independent of the information data as will be shown below. The

difference between this precoder and precoder A is that in addition to using the degrees of freedom

of the allowed constellation error, i.e., EVM, it also uses the free carriers to improve the reduction

of the OOB leakage.
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Let the total number of subcarriers K be partitioned into Nd data subcarriers and Nr free

subcarriers where K = Nd +Nr. Also, let us define a K ×Nd matrix B containing the Nd columns

of the K × K identity matrix IK corresponding to the data subcarriers and a K × Nr matrix C

containing the Nr columns of the K × K identity matrix corresponding to the free subcarriers.

Both B and C are subcarrier selection matrices. We can now write the precoded vector s as

s = Bd + w , (5.23)

where d = [d1, d2, ..., dNd ] is an Nd×1 information data vector and w = [w1, w2, ..., wK ] is an K×1

distortion vector which will be designed to control the spectral emissions of the precoded data in s

where some of the elements of w act as free carriers. For example, if 4 free subcarriers are allocated

with 2 on each side of the transmission band, then s = [w1, w2, d1 +w3, ..., dNd +wK−2, wK−1, wK ].

Note that the weights of the free carriers are exactly the corresponding elements in the vector w.

Moreover, the information data is also distorted, however and as mentioned before, this distortion

will be controlled to satisfy a given EVM.

In this work, we choose w as a linear combination of the information data in d, in particular

we design w as

w = Gd . (5.24)

(5.24) creates free carriers that are a linear combination of the data. The precoded vector s in

(5.23) is therefore written as

s = Bd + Gd = (B + G)︸ ︷︷ ︸
P0

d , (5.25)

where P0 is the desired precoder. However, since B is known, finding the precoder P0 is equivalent

to finding the matrix G. The main objective in the construction of the precoder G is to reduce the

OOB power leakage of the transmitted signal. However, in addition to that, we have two additional

goals: first, the precoded data should satisfy an acceptable EVM value specified by the OFDM

66



www.manaraa.com

standard. Second, the power of the free carriers, which are calculated as a linear combination of

the data as a result of (5.24), should be controlled in a such away that it’s only a fraction of the

power consumed by the data subcarriers. There are good reasons in keeping the power allocated

to the free carriers small. First, the free subcarriers are dummy subcarriers that do not carry any

useful information, they are only used for the purpose of reducing the spectral emissions of the

transmitted signal. Second, allocating too much power to the free subcarriers increases the PAPR

of the signal, which might lead to a spectral regrowth problem, specially if the peak power of the

signal drove the PA into its non-linear region.

Since the subcarriers are divided into data subcarriers and free subcarriers, the EVM is a

function of only the data subcarriers. The free subcarriers are excluded from the EVM calculation

since they do not carry any useful information. Using the subcarrier selection matrix B defined

above, the average EVM constraint can be written as

E{‖d−BTs‖22} = E{‖(I−BT(B + G))d‖22} ≤ α , (5.26)

and as what we did in (5.10), this can be further expanded to

Tr{(INd
−BT(B + G))(INd −BT(B + G))T}

= ‖INd −BT(B + G)‖2F ≤ α , (5.27)

As mentioned above, we also constrain the mean power of the free subcarriers to be below a certain

level. This constraint is written as

E{‖CT(B + G)d‖22} ≤ β , (5.28)

where CT is a selection matrix for the free subcarriers and β is the power overhead defined as

the ratio between the power consumed by the free subcarriers and the power used by the data

subcarriers which is assumed to be 1. Since the information data in d is i.i.d with zero mean and

unit variance, (5.28) is therefore independent of the information data, Hence, similar to the EVM
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constraint above, (5.28) is expanded as

‖CT (B + G)‖2F ≤ β . (5.29)

The average OOB power leakage expression of the precoded data in (5.25) is similar to the one in

(5.6) except that the precoder is different here, and is written as

Sb = E{‖A(B + G)d‖22} = ‖A(B + G)‖2F . (5.30)

To minimize the OOB power leakage in (5.30) subject to the constraints in (5.27) and (5.29), we

formulate the optimization problem as follows

P = arg min
G
‖A(B + G)‖2F

subject to ‖INd −BT(B + G)‖2F ≤ α

‖CT (B + G)‖2F ≤ β ,

(5.31)

to the best of our knowledge, there is no closed-form solution to (5.31). However, the problem

is convex and can be solved numerically using any optimization package. In this work, we use

YALMIP [70] with MOSEK [71] as the underlying solver, both of which are easily integrated with

MATLAB. We would like to note that although the precoder in (5.31) does not have a closed-form

solution, it can be solved off-line only once and used for all incoming OFDM symbols as long as

the spectral occupancy does not change.

5.4 Numerical Results

5.4.1 Precoder A Performance

We first evaluate the performance of precoder A. In all simulation results, we adopt the

OFDM parameters of the 3GPP LTE standard with K = 300 subcarriers, Ts = 1
15 ms and Tcp = 9

128

ms. The OOB power leakage is estimated by generating 103 random 4-QAM symbols.
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Figure 5.3 EVM vs. mean OOB power leakage reduction.
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Figure 5.4 OOB reduction performance of precoder A.
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In Figure 5.3, we show the average OOB power leakage reduction for different EVM values

in terms of the reduction factor η defined as the ratio of the OOB power leakage of the precoded

data to the OOB power leakage of the uncoded data

η =
‖AP‖2F
‖A‖2F

(5.32)

Figure 5.3 shows that as the allowed EVM tolerance increases, more reduction in the OOB power

leakage is achieved. We remark here that the maximum allowed EVM for 4-QAM symbols is 17.5%

as specified by the 3GPP LTE standard. At this EVM value, the proposed precoder can result in

an average OOB power leakage reduction of more than 100 dB. However, it’s not practical to use

all the maximum allowed EVM tolerance just to reduce OOB emissions. Some room should be left

for other impairments such as the distortion introduced by the nonlinearity of the PA. Nonetheless,

remarkable OOB leakage reduction can still be achieved even if some EVM margin is allocated for

other impairments. For example, a reduction of 18 dB is achieved at an EVM value of 8% while an

allowed EVM of 10% reduces the OOB leakage by more than 26 dB. The PSD of the transmitted

signal for different EVM values is shown in Figure 5.4 along with that of a plain OFDM signal.

We select 8 discrete frequencies, fm = {±6100 ± 1,±5100 ± 1}, where the power spectrum is to

be minimized by the precoder (5.20). Our choice of adjacent frequencies comes from the fact that

positioning pairs of frequencies close to each other significantly improves the OOB power leakage

reduction of the precoder, which has also been observed previously in [1]. As expected, the spectral

suppression of the precoder improves as the allowed EVM margin increases. An EVM tolerance of

12%, which still leaves enough head room for other impairments, results in remarkable OOB power

leakage reduction.

The spectral suppression performance of precoder A with respect to other state of the art

precoders in [1] and [2] is shown in Figure 5.5. For a fair comparison, we fixed the EVM value for

all precoders at 12% with 4-QAM symbols employed in the transmission. In [2], three precoders are

proposed that make N -continuous OFDM signals compatible with the EVM requirements specified

by the OFDM standard. N -continuous OFDM signals are originally introduced in [31] to improve
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Figure 5.5 Performance of precoder A against the precoders in [1] and [2]; EVM = 12% for 4-QAM.

the spectrum emissions of classical OFDM signals. Out of the three precoders in [2], we choose

precoder (21) which has the best suppression performance among all three. Furthermore, we

choose a continuity order of N = 1 which provides the best spectral suppression performance

compared to other orders of continuity for the given number of subcarriers K = 300 and the

specified EVM= 12%. The reader can refer to [2] for the details of choosing the parameter values

of precoder (21) in [2]. Results in Figure 5.5 clearly show the superiority of precoder A over the

precoder (21) in [2] (dashed line) with regard to the OOB power leakage reduction.

We also compare the suppression performance of precoder A to the nullspace projection

precoder in [1]. The projection precoder has an EVM=
√
M/K, where M is the number of

discrete frequencies where spectral nulls (notches) are desired. Therefore for this projection precoder

to create signals with EVM = 12%, M is calculated to be around 4.32. That means, at most 4

discrete notch frequencies can be selected in the OOB region in order to minimize the spectrum. To

show the performance of the projection precoder, We select two sets of 4 discrete notch frequencies:

φ1 = {±5100±1} which is close to the band of transmission and φ2 = {±8999±1} in the far region,
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away from the transmission band. Over the region close to the transmission band, the OOB power

leakage reduction performance of precoder A is identical to that of the projection precoder with

notching frequencies φ1, but better than the projection precoder with nothching frequencies φ2 as

shown in Figure 5.5. As we move away from the transmission band, precoder A achieves better

suppression compared to the projection precoder with notching frequencies φ1. The performance of

precoder A is inferior to the projection precoder with notching frequencies φ2 only in the far region.

Another advantage of precoder A over the projection precoder [1] is that there is no restriction on

how many frequencies can be chosen in the OOB region to minimize power spectrum. This is

clearly not the case for the projection precoder as the number of notch frequencies is dependent

on the number of subcarriers and the allowed EVM. No such dependency exists for precoder A,

and therefore its parameters can be adapted more flexibly to achieve the best OOB power leakage

performance.

5.4.2 Precoder B Performance

First, we show the constellation of the transmitted symbols resulting from precoder B in

Figure 5.6. Since there is no restriction on the distortion exerted on the free subcarriers, the symbols

(not necessarily 4-QAM) transmitted over them are scattered in the entire constellation. On the

other hand, the distortion on the data subcarriers is contrained to produce an EVM = 8%. As such,

the precoded data subcarriers are slightly distorted compared to the ideal 4-QAM constellations

as shown in Figure 5.6. It is this degree of freedom in distorting the free subcarriers that improves

the spectral suppression performance of precoder B over precoder A as will be shown in the results

below. In Figure 5.7, we show the average OOB power leakage reduction of precoder B as a function

of β, which represents the power overhead consumed by the free subcarriers relative to the data

symbols, as well as the number of free subcarriers when the EVM is set to 8%. We choose 3 sets

of free subcarriers where Nr = {12, 18, 24}, with Nr/2 subcarriers on each edge of the transmission

band. Figure 5.7 clearly shows the improvement in the suppression performance as the number of

free subcarriers increases. Another observation in Figure 5.7 is that, for a given number of free

subcarriers, the average OOB power leakage reduction improves as β increases up to a point, after
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Figure 5.6 Constellation of 4-QAM symbols transmitted by precoder B, β = 2%, Nr = 18,EVM =
8%.

which, any increase in β does not translate in any improvement in the OOB emission reduction.

This result can help in setting the power overhead for a given EVM and number of free subcarriers.

The actual PSD performance of precoder B is shown in Figure 5.8. The EVM is set to

8%, the number of free subcarriers is Nr = 18 with 9 subcarriers on each side of the transmission

band and the free subcarriers have a 2% power overhead. For only a 18/300 = 6% reduction in the

transmission rate, precoder B can achieve deep suppression compared to precoder A for the same

EVM of 8%.
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Figure 5.8 Performance of precoder A and precoder B, β = 2%, Nr = 18,EVM = 8% for 4-QAM.
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5.5 Conclusion

In this chapter, we presented two precoders for improving the spectral emissions of OFDM.

The proposed precoders can significantly reduce the OOB power leakage of the transmitted signal

while guaranteeing acceptable error performance at the receiver without the need for transmitting

any side information, thereby maintaining a transmission rate similar to that of plain OFDM. We

also showed the improvement in the suppression performance of the proposed precoders compared

to other state of the art precoders.
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Appendix A : Acronyms

Acronym Description

3GPP 3rd Generation Partnership Project

ACLR adjacent channel leakage ratio

AIC active interference cancellation

AWGN additive white Gaussian noise

BER bit error rate

CCDF complimentary cumulative distribution function

CC cancellation carriers

CP cyclic prefix

CR cognitive radio

CSI channel state information

DFT discrete Fourier transformation

EVM error vector magnitude

FBMC filter bank multicarrier

FCC Federal Communication Commission

FFT fast Fourier transformation

GFDM generalized frequency division multiplexing

IA interference alignment

ICI inter-carrier interference

IDFT inverse discrete Fourier transformation

IFFT inverse fast Fourier transformation

ISI inter-symbol interference

LSQI least squares with a quadratic inequality

MSE mean square error

OFDM Orthogonal frequency division multiplexing

OOB out-of-band
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Acronym Description

PA power amplifier

PAPR peak-to-average power ratio

PDP power delay profile

PHY physical layer

PSD power spectral density interference

P/S parallel-to-serial

PU primary user

RF radio frequency

RRC root-raised cosine

SA suppressing alignment

SEM spectral emission mask

SNR signal-to-noise ratio

S/P serial-to-parallel

SU secondary user

SW subcarrier weighting
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